Processing math: 100%

紊流积分尺度对CAARC模型迎风面极值风压特性的影响及修正方法

张海程, 杜树碧, 李明水, 杨阳

张海程, 杜树碧, 李明水, 杨阳. 紊流积分尺度对CAARC模型迎风面极值风压特性的影响及修正方法[J]. 工程力学, 2023, 40(10): 11-20. DOI: 10.6052/j.issn.1000-4750.2022.01.0092
引用本文: 张海程, 杜树碧, 李明水, 杨阳. 紊流积分尺度对CAARC模型迎风面极值风压特性的影响及修正方法[J]. 工程力学, 2023, 40(10): 11-20. DOI: 10.6052/j.issn.1000-4750.2022.01.0092
ZHANG Hai-cheng, DU Shu-bi, LI Ming-shui, YANG Yang. THE EFFECT OF THE TURBULENCE INTEGRAL SCALE ON THE EXTREME WIND PRESSURES ON THE WINDWARD SURFACE OF THE CAARC MODEL AND THE CORRECTION METHOD[J]. Engineering Mechanics, 2023, 40(10): 11-20. DOI: 10.6052/j.issn.1000-4750.2022.01.0092
Citation: ZHANG Hai-cheng, DU Shu-bi, LI Ming-shui, YANG Yang. THE EFFECT OF THE TURBULENCE INTEGRAL SCALE ON THE EXTREME WIND PRESSURES ON THE WINDWARD SURFACE OF THE CAARC MODEL AND THE CORRECTION METHOD[J]. Engineering Mechanics, 2023, 40(10): 11-20. DOI: 10.6052/j.issn.1000-4750.2022.01.0092

紊流积分尺度对CAARC模型迎风面极值风压特性的影响及修正方法

详细信息
    作者简介:

    张海程(1997−),男,山西临汾人,博士生,主要从事结构风工程研究(E-mail: zhc18392637364@126.com)

    李明水(1966−),男,河南新乡人,教授,博士,博导,主要从事桥梁与结构风工程研究(E-mail: lms_rcwe@swjtu.edu.cn)

    杨 阳(1987−),男,湖南长沙人,讲师,博士,主要从事桥梁与结构风工程研究(E-mail: yang_yacad@163.com)

    通讯作者:

    杜树碧(1986−),女,四川成都人,讲师,博士,主要从事桥梁与结构风工程研究(E-mail: dus_rcwe@swjtu.edu.cn)

  • 中图分类号: TU973+.213

THE EFFECT OF THE TURBULENCE INTEGRAL SCALE ON THE EXTREME WIND PRESSURES ON THE WINDWARD SURFACE OF THE CAARC MODEL AND THE CORRECTION METHOD

  • 摘要: 大气边界层流场中紊流度剖面可以正确模拟,但紊流积分尺度很难精确模拟,对于CAARC (commonwealth advisory aeronautical research council)标准高层建筑模型在大气边界层B类场地,实际紊流积分尺度为高层建筑采用常用缩尺比在常规风洞中的1.4倍~2.7倍。该文通过风洞试验在大气边界层B类场地中采用5种不同缩尺比工况,其中一种工况接近于工程实际,通过其余四种工况与这种工况对比,定量地研究了紊流积分尺度对CAARC模型迎风面极值风压特性的影响。结果表明,极值风压系数随紊流积分尺度的增大而增大,极值风压系数误差随模拟紊流积分尺度误差的增大而增大,当实际紊流积分尺度为模拟积分尺度的3.25倍时,实际极值风压系数为模拟极值风压系数的1.55倍,误差率高达35%,且迎风面越靠近驻点的测点,受紊流积分尺度的这种影响越显著;为了更深入理解紊流积分尺度的影响,利用脉动风压功率谱分析了极值风压受紊流积分尺度的影响机理;最后根据紊流积分尺度对极值风压系数的影响,提出了迎风面极值风压系数的修正公式。该试验采用的紊流积分尺度涵盖高层建筑常用缩尺比在常规风洞中紊流积分尺度模拟的所有误差范围,同时以CAARC标准高层建筑模型为试验对象,可以为所有风洞试验结果提供修正依据,同时可以推广到其他钝体。
    Abstract: The turbulence profile in the atmospheric boundary can be correctly simulated, but the turbulence integration scale is difficult to accurately simulate. For the CAARC (commonwealth advisory aeronautical research council) standard high-rise building model, the actual turbulence integration scale is 1.4 to 2.7 times that of the common integral scale used in high-rise buildings in conventional wind tunnels. In this paper, five different turbulent integration scales of atmospheric boundary layer wind fields of Category B were considered. One of them was close to the actual flow field, and the effect of the turbulent integration scale on the extreme wind pressure characteristics on the windward of the CAARC model was quantitatively studied by comparing the remaining four flow fields with this flow field. The results show that the extreme wind pressure coefficient increases with the increase of the turbulence integral scale, and the error of the extreme wind pressure coefficient increases with the increase of the error of the simulated turbulence integral scale. When the actual turbulence integral scale is 3.25 times the simulated integral scale, the actual extreme wind pressure coefficient is 1.55 times the extreme wind pressure coefficient in simulated integral scale, and the error rate is as high as 35%. And the closer the stagnation point, the more significant the effect of the turbulence integral scale. To better understand the effect of the turbulence integral scale, the mechanism of the effect of the turbulence integration scale on the extreme wind pressure was analysed through the power spectrum of the fluctuating pressure. Finally, the correction formula of extreme wind pressure coefficient on windward was proposed according to the effect of turbulent integral scale on the extreme wind pressure coefficient. The turbulence integral scale used in this test covers all the error ranges simulated by the turbulence integral scale commonly used in high-rise buildings in conventional wind tunnels, and the standard high-rise building model can provide a correction basis for all wind tunnel experimental results and can be generalized to other blunt bodies.
  • 图  1   模型尺寸与测压孔编号 /m

    Figure  1.   Size of the model and the tap number

    图  2   平均风速与紊流度剖面

    Figure  2.   Mean speed and turbulence intensity profile

    图  3   脉动风速功率谱

    Figure  3.   Wind speed power spectra

    图  4   平均风压系数

    Figure  4.   Mean pressure coefficients

    图  5   脉动风压系数

    Figure  5.   RMS pressure coefficients

    图  6   脉动风压偏度与峰度

    Figure  6.   Skewness and kurtosis of fluctuating pressures

    图  7   峰值因子

    Figure  7.   Peak factor

    图  8   脉动风压功率谱

    Figure  8.   Power spectrum of the fluctuating pressures

    图  9   极值风压系数

    Figure  9.   Extreme wind pressure coefficients

    图  10   极值风压系数修正公式

    Figure  10.   Correction formula of extreme wind pressure coefficient

    表  1   工况参数

    Table  1   Parameters of cases

    工况LxuLxu/D阻塞比/(%)(Lxu/D)O(Lxu/D)T
    宽面窄面宽面
    XNJD320.8313.645.450.211.00
    XNJD150.2993.274.901.741.13
    XNJD311.3282.904.360.831.26
    XNJD130.3212.113.162.911.73
    XNJD120.2551.121.674.363.25
    注: Lxu为顺风向紊流积分尺度;D为迎风面宽度;(Lxu/D)O(Lxu/D)T分别为目标工况和试验工况的紊流积分尺度与迎风面宽度之比。
    下载: 导出CSV

    表  2   极值风压系数误差

    Table  2   Error of extreme pressure coefficients

    工况(Lxu/D)O(Lxu/D)T宽面迎风D/B=1.50窄面迎风D/B=0.67
    COpeak/CTpeakCOpeak/CTpeak
    1号2号3号6号7号8号
    XNJD123.251.511.501.491.571.561.57
    XNJD131.731.391.381.381.461.461.46
    XNJD311.261.261.261.271.281.281.27
    XNJD151.131.101.131.131.111.111.12
    下载: 导出CSV

    表  3   误差对比

    Table  3   Comparison of error

    工况(Lxu/D)O/(Lxu/D)T宽面迎风D/B=1.50窄面迎风D/B=0.67
    (COpeak/CTpeak)O(COpeak/CTpeak)R(COpeak/CTpeak)O(COpeak/CTpeak)R
    1号2号3号1号2号3号6号7号8号6号7号8号
    XNJD123.251.511.501.490.991.011.011.571.561.570.990.991.00
    XNJD131.731.391.381.381.001.021.031.461.461.460.991.000.99
    XNJD311.261.261.261.271.001.001.001.281.281.271.001.001.00
    XNJD151.131.101.131.131.011.001.001.111.111.121.011.001.01
    下载: 导出CSV
  • [1]

    IRWIN H P A H. The design of spires for wind simulation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7(3): 361 − 366. doi: 10.1016/0167-6105(81)90058-1

    [2]

    AIJ 2004, RLB recommendations for loads on buildings [S]. Tokyo, Japan: Structural Standards Committee, Architectural Institute of Japan, 2004.

    [3]

    MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: Theory, design and application [M]. Netherlands: John Wiley & Sons, 2010.

    [4] JTG/T 3360-01−2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2018.

    JTG/T 3360-01−2018, Wind-resistant design specification for highway bridges [S]. Beijing: China Communications Press, 2018. (in Chinese)

    [5]

    MOONEGHI M A, IRWIN P, CHOWDHURY A G. Partial turbulence simulation method for predicting peak wind loads on small structures and building appurtenances [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157: 47 − 62.

    [6]

    LI Q S, MELBOURNE W H. An experimental investigation of the effects of free-stream turbulence on streamwise surface pressures in separated and reattaching flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 313 − 323. doi: 10.1016/0167-6105(94)00050-N

    [7]

    LI Q S, MELBOURNE W H. The effect of large-scale turbulence on pressure fluctuations in separated and reattaching flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1/2/3): 159 − 169.

    [8]

    LI Y G, YAN J H, CHEN X Z, et al. Investigation of surface pressures on CAARC tall building concerning effects of turbulence [J]. Wind and Structures, 2020, 31(4): 287 − 298.

    [9] 祝志文, 邓燕华. 湍流积分尺度对高层建筑风荷载影响的大涡模拟[J]. 西南交通大学学报, 2018, 53(3): 508 − 516. doi: 10.3969/j.issn.0258-2724.2018.03.011

    ZHU Zhiwen, DENG Yanhua. Investigation into effects of turbulence integral length on wind loads acting on tall buildings using large eddy simulation [J]. Journal of Southwest Jiaotong University, 2018, 53(3): 508 − 516. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.03.011

    [10]

    DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187 − 196. doi: 10.1680/iicep.1964.10112

    [11]

    KWON D K, KAREEM A. Comparative study of major international wind codes and standards for wind effects on tall buildings [J]. Engineering Structures, 2013, 51: 23 − 35. doi: 10.1016/j.engstruct.2013.01.008

    [12] 田玉基, 杨庆山, 范重. 《建筑结构荷载规范》围护构件风荷载的修订建议[J]. 建筑结构学报, 2017, 38(10): 108 − 115.

    TIAN Yuji, YANG Qingshan, FAN Zhong. Proposed revisions on wind load provisions for cladding and components in 'Load code for the design of building structures' [J]. Journal of Building Structures, 2017, 38(10): 108 − 115. (in Chinese)

    [13] 庄翔, 董欣, 郑毅敏, 等. 矩形高层建筑非高斯风压时程峰值因子计算方法[J]. 工程力学, 2017, 34(7): 177 − 185, 223. doi: 10.6052/j.issn.1000-4750.2016.02.0134

    ZHUANG Xiang, DONG Xin, ZHENG Yimin, et al. Peak factor estimation methods of non-Gaussian wind pressures on a rectangular high-rise building [J]. Engineering Mechanics, 2017, 34(7): 177 − 185, 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.02.0134

    [14] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计: 复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 − 31. doi: 10.6052/j.issn.1000-4750.2018.10.0855

    GAO Shan, ZHENG Xiangyuan, HUANG Yi. Hybrid hermite models for short term extrema estimation of non-Gaussian processes [J]. Engineering Mechanics, 2019, 36(1): 23 − 31. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0855

    [15] 潘小涛, 黄铭枫, 楼文娟. 复杂体型屋盖表面风压的高阶统计量与非高斯峰值因子[J]. 工程力学, 2014, 31(10): 181 − 187. doi: 10.6052/j.issn.1000-4750.2013.05.0398

    PAN Xiaotao, HUANG Mingfeng, LOU Wenjuan. High-order statistics and non-Gaussian peak factors of pressure processes on a complex long-span roof [J]. Engineering Mechanics, 2014, 31(10): 181 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0398

    [16] 林强, 刘敏, 杨庆山, 等. 非高斯风压峰值因子估计: 基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37(4): 78 − 86. doi: 10.6052/j.issn.1000-4750.2019.04.0201

    LIN Qiang, LIU Min, YANG Qingshan, et al. A comparative study on moment-based translation process methods for the peak factor estimation of non-Gaussian wind pressures [J]. Engineering Mechanics, 2020, 37(4): 78 − 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0201

    [17]

    GIOFFRÈ M, GUSELLA V, GRIGORIU M. Non-Gaussian wind pressure on prismatic buildings. I: Stochastic field [J]. Journal of Structural Engineering, 2001, 127(9): 981 − 989. doi: 10.1061/(ASCE)0733-9445(2001)127:9(981)

    [18]

    KUMAR K S, STATHOPOULOS T. Wind loads on low building roofs: A stochastic perspective [J]. Journal of Structural Engineering, 2000, 126(8): 944 − 956. doi: 10.1061/(ASCE)0733-9445(2000)126:8(944)

    [19] 徐安. 超高层建筑结构风效应的现场实测与风洞试验研究[D]. 广州: 华南理工大学, 2016.

    XU An. Field measurement and wind tunnel experimental study on wind effects of super-tall buildings [D]. Guangzhou: South China University of Technology, 2016. (in Chinese)

    [20]

    Bergh H , Tijdeman H . Theoretical and experimental results for the dynamic response of pressure measuring systems [R]. Netherlands: National Aerospace Laboratory NLR, 1965.

    [21]

    IRWIN H P A H, COOPER K R, GIRARD R. Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1979, 5(1/2): 93 − 107.

    [22] 谢壮宁, 顾明, 倪振华. 复杂测压管路系统动态特性的通用分析程序[J]. 同济大学学报, 2003, 31(6): 702 − 708.

    XIE Zhuangning, GU Ming, NI Zhenhua. General arithmetic to analyze dynamic characteristics of complex tubing system for fluctuating wind pressure measurements [J]. Journal of Tongji University, 2003, 31(6): 702 − 708. (in Chinese)

    [23] JGJ/T 338−2014, 建筑工程风洞试验方法标准[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ/T 338−2014, Standard for wind tunnel test of buildings and structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)

    [24]

    LAROSE G L, MANN J. Gust loading on streamlined bridge decks [J]. Journal of Fluids and Structures, 1998, 12(5): 511 − 536. doi: 10.1006/jfls.1998.0161

    [25]

    MELBOURNE W H. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1980, 6(1/2): 73 − 88.

    [26] GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

    GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

    [27]

    ASCE 7-10, Minimum design loads for buildings and other structures [S]. Reston, VA: American Society of Civil Engineers, 2010.

    [28]

    AS/NZS 1170.2: 2011, Structural design actions – Part 2: Wind actions [S]. New Zealand, Australia: Joint Technical Committee BD-006, 2011.

    [29]

    NBCC 2010, National building code of Canada [S]. Ottawa, Canada: Associate Committee on the National Building Code, National Research Council, 2010.

    [30] 张建胜, 武岳, 沈世钊. 结构风振极值分析中的峰值因子取值探讨[J]. 铁道科学与工程学报, 2007, 4(1): 28 − 32. doi: 10.3969/j.issn.1672-7029.2007.01.006

    ZHANG Jiansheng, WU Yue, SHEN Shizhao. Discussion on the value of the peak factor in the analysis of wind-induced vibration [J]. Journal of Railway Science and Engineering, 2007, 4(1): 28 − 32. (in Chinese) doi: 10.3969/j.issn.1672-7029.2007.01.006

    [31]

    HUNT J C R. A theory of turbulent flow round two-dimensional bluff bodies [J]. Journal of Fluid Mechanics, 1973, 61(4): 625 − 706. doi: 10.1017/S0022112073000893

图(10)  /  表(3)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  146
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-08-09
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2023-10-09

目录

    /

    返回文章
    返回