建筑结构抗震“体系能力设计法”综述

叶列平, 金鑫磊, 田源, 陆新征, 缪志伟, 曲哲, 林旭川, 卢啸

叶列平, 金鑫磊, 田源, 陆新征, 缪志伟, 曲哲, 林旭川, 卢啸. 建筑结构抗震“体系能力设计法”综述[J]. 工程力学, 2022, 39(5): 1-12. DOI: 10.6052/j.issn.1000-4750.2021.03.0173
引用本文: 叶列平, 金鑫磊, 田源, 陆新征, 缪志伟, 曲哲, 林旭川, 卢啸. 建筑结构抗震“体系能力设计法”综述[J]. 工程力学, 2022, 39(5): 1-12. DOI: 10.6052/j.issn.1000-4750.2021.03.0173
YE Lie-ping, JIN Xin-lei, TIAN Yuan, LU Xin-zheng, MIAO Zhi-wei, QU Zhe, LIN Xu-chuan, LU Xiao. "SYSTEM CAPACITY DESIGN METHOD" FOR THE SEISMIC DESIGN OF BUILDING STRUCTURES: A REVIEW[J]. Engineering Mechanics, 2022, 39(5): 1-12. DOI: 10.6052/j.issn.1000-4750.2021.03.0173
Citation: YE Lie-ping, JIN Xin-lei, TIAN Yuan, LU Xin-zheng, MIAO Zhi-wei, QU Zhe, LIN Xu-chuan, LU Xiao. "SYSTEM CAPACITY DESIGN METHOD" FOR THE SEISMIC DESIGN OF BUILDING STRUCTURES: A REVIEW[J]. Engineering Mechanics, 2022, 39(5): 1-12. DOI: 10.6052/j.issn.1000-4750.2021.03.0173

建筑结构抗震“体系能力设计法”综述

基金项目: 国家重点研发计划政府间国际创新合作项目(2019YFE0112800);国家自然科学基金面上项目(51778341)
详细信息
    作者简介:

    叶列平(1960−),男,浙江人,教授,博士,主要从事混凝土结构与结构抗震研究(E-mail: ylp@tsinghua.edu.cn)

    金鑫磊(1996−),男,湖北人,博士生,主要从事高层建筑结构抗震研究(E-mail: jinxl18@mails.tsinghua.edu.cn)

    陆新征(1978−),男,安徽人,教授,博士,主要从事结构数值模拟与防灾减灾研究(E-mail: luxz@tsinghua.edu.cn)

    缪志伟(1981−),男,江苏人,副教授,博士,主要从事建筑结构抗震设计研究(E-mail: zhiweiseu@sina.com)

    曲 哲(1983−),男,陕西人,研究员,博士,主要从事建筑物的地震损伤控制与震后快速恢复的研究(E-mail: quz@iem.ac.cn)

    林旭川(1984−),男,浙江人,研究员,博士,主要从事数值模拟与钢结构抗震研究(E-mail: linxc03@gmail.com)

    卢 啸(1986−),男,湖南人,副教授,博士,主要从事高层抗震研究(E-mail: xiaolu@bjtu.edu.cn)

    通讯作者:

    田 源(1991−),男,辽宁人,博士,主要从事工程结构抗震与防灾减灾研究(E-mail: t-y14@tsinghua.org.cn)

  • 中图分类号: TU973+.2;TU318+.1

"SYSTEM CAPACITY DESIGN METHOD" FOR THE SEISMIC DESIGN OF BUILDING STRUCTURES: A REVIEW

  • 摘要: 建筑结构是由不同力学单元组合形成的复杂系统,从系统层次控制结构在强震下的动力响应与损伤过程对结构抗震设计具有重要意义。为使建筑结构具有“稳定、有序、渐进、可控”的地震损伤机制与破坏模式,预先设计明确的损伤机制和提高结构整体屈服后刚度是有效途径。在此背景下,“体系能力设计法”得以提出和发展。体系能力设计法通过在体系层次设置主、次结构,使结构的弹塑性动力响应受控于抗震能力较高的主结构,从而实现性态控制。该文综述了体系能力设计法中的关键科学问题在近年来的重要发展,并探讨了体系能力设计法的工程指导意义与未来发展方向。
    Abstract: Building structures are complex systems consisting of different structural members. It is of great significance to the seismic design of structures to control the dynamic response and failure process under strong earthquakes at the system level. To ensure that the building structures show "stable, orderly, gradual, and controllable" seismic failure mechanisms and modes, one effective way is to pre-design a clear damage mechanism and improve the overall post-yield stiffness of the structure. To this end, the "system capacity design method" was proposed and developed. The method sets the primary and secondary structures at the system level so that the inelastic dynamic response of the structure is controlled by the primary structure with higher seismic capacity, thereby realizing the control of the seismic performance. This paper summarizes recent important research progress of key scientific issues in the system capacity design method, and discusses its engineering significance and future development.
  • 图  1   钢筋混凝土剪力墙结构体中的主、次结构

    Figure  1.   Primary and secondary structures in a reinforced concrete shear wall structure

    图  2   摇摆墙-框架结构中的主、次结构

    Figure  2.   Primary and secondary structures in a rocking wall-frame structure

    图  3   典型框架结构在不同荷载形式下的构件重要性指标

    Figure  3.   Member importance index of a typical frame structure under different load patterns

    图  4   钢筋混凝土双功能带缝剪力墙

    Figure  4.   Reinforced concrete dual function slitted shear wall

    图  5   框架-支撑筒体系

    Figure  5.   Frame-braced tube structural system

    图  6   摇摆墙-框架结构及其整体破坏机制

    Figure  6.   Rocking wall-frame structure and its overall failure mechanism

  • [1] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4): 130 − 139.

    Lü Xilin, Zhou Ying, Chen Cong. Research progress on innovative earthquake-resilient structural systems [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4): 130 − 139. (in Chinese)

    [2] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Structures, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    [3] 曲哲, 叶列平. 基于损伤机制控制的钢筋混凝土结构抗震设计方法研究[J]. 建筑结构学报, 2011, 32(10): 21 − 29.

    Qu Zhe, Ye Lieping. Seismic design methodology based on damage mechanism control for reinforced concrete structures [J]. Journal of Building Structures, 2011, 32(10): 21 − 29. (in Chinese)

    [4]

    Paulay T. Deterministic seismic design procedures for reinforced concrete buildings [J]. Engineering Structures, 1983, 5(1): 79 − 86. doi: 10.1016/0141-0296(83)90044-5

    [5] 经杰. 双重抗震结构基于位移抗震设计方法的研究 [D]. 北京: 清华大学, 2002.

    Jing Jie. Studies on displacement-based seismic design for dual structures [D]. Beijing: Tsinghua University, 2002. (in Chinese)

    [6] 马千里, 陆新征, 叶列平. 层屈服后刚度对地震响应离散性影响的研究[J]. 工程力学, 2008, 25(7): 133 − 141.

    Ma Qianli, Lu Xinzheng, Ye Lieping. Influence of the inter-story post-yield stiffness to the variance of seismic response [J]. Engineering Mechanics, 2008, 25(7): 133 − 141. (in Chinese)

    [7] 周靖. 钢筋混凝土框架结构基于性能系数抗震设计法的基础研究 [D]. 广州: 华南理工大学, 2006.

    Zhou Jing. Fundamental research on the seismic design method of reinforced concrete frame structures based on behavior factor [D]. Guangzhou: South China University of Technology, 2006. (in Chinese)

    [8]

    Christopoulos C, Pampanin S, Nigel Priestley M J. Performance-based seismic response of frame structures including residual deformations. Part I: Single-degree of freedom systems [J]. Journal of Earthquake Engineering, 2003, 7(1): 97 − 118.

    [9]

    Xiang Y, Koetaka Y. Ductility demand of bilinear hysteretic systems with large post-yield stiffness: Spectral model and application in the seismic design of dual-systems [J]. Engineering Structures, 2019, 187: 504 − 517. doi: 10.1016/j.engstruct.2019.02.011

    [10] 程光煜. 基于能量抗震设计方法及其在钢支撑框架结构中的应用 [D]. 北京: 清华大学, 2007.

    Cheng Guangyu. Study on energy-based seismic design methodology and application in steel braced frames [D]. Beijing: Tsinghua University, 2007. (in Chinese)

    [11]

    Nakashima M, Saburi K, Tsuji B. Energy input and dissipation behavior of structures with hysteretic dampers [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(5): 483 − 496.

    [12]

    Connor J J, Wada A, Iwata M, Huang Y H. Damage-controlled structures. I: Preliminary design methodology for seismically active regions [J]. Journal of Structural Engineering, 1997, 123(4): 423 − 431. doi: 10.1061/(ASCE)0733-9445(1997)123:4(423)

    [13]

    Harada Y, Akiyama H. Seismic design of flexible-stiff mixed frame with energy concentration [J]. Engineering Structures, 1998, 20(12): 1039 − 1044. doi: 10.1016/S0141-0296(97)00201-0

    [14] 叶列平. 体系能力设计法与基于性态/位移抗震设计[J]. 建筑结构, 2004, 34(6): 10 − 14.

    Ye Lieping. Structure system capacity design approach and performance/displacement based seismic design [J]. Building Structure, 2004, 34(6): 10 − 14. (in Chinese)

    [15] Paulay T, Priestley M J N. 钢筋混凝土和砌体结构的抗震设计 [M]. 北京: 中国建筑工业出版社, 2011.

    Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings [M]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    [16]

    Kiggins S, Uang C M. Reducing residual drift of buckling-restrained braced frames as a dual system [J]. Engineering Structures, 2006, 28(11): 1525 − 1532. doi: 10.1016/j.engstruct.2005.10.023

    [17]

    Gharaibeh E S, Frangopol D M, Onoufriou T. Reliability-based importance assessment of structural members with applications to complex structures [J]. Computers & Structures, 2002, 80(12): 1113 − 1131.

    [18] 张雷明, 刘西拉. 框架结构能量流网络及其初步应用[J]. 土木工程学报, 2007, 40(3): 45 − 49. doi: 10.3321/j.issn:1000-131X.2007.03.008

    Zhang Leiming, Liu Xila. Network of energy transfer in frame structures and its preliminary application [J]. China Civil Engineering Journal, 2007, 40(3): 45 − 49. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.03.008

    [19] 林旭川. 基于系统方法的RC框架结构抗震性能优化设计 [D]. 北京: 清华大学, 2009.

    Lin Xuchuan. Optimal design for seismic performance of RC frame based on system method [D]. Beijing: Tsinghua University, 2009. (in Chinese)

    [20] 叶列平, 林旭川, 曲哲, 等. 基于广义结构刚度的构件重要性评价方法[J]. 建筑科学与工程学报, 2010, 27(1): 1 − 6, 20.

    Ye Lieping, Lin Xuchuan, Qu Zhe, et al. Evaluating method of element importance of structural system based on generalized structural stiffness [J]. Journal of Architecture and Civil Engineering, 2010, 27(1): 1 − 6, 20. (in Chinese)

    [21] 林旭川, 叶列平. 基于构件重要性指标的RC框架结构抗震优化设计研究[J]. 建筑结构学报, 2012, 33(6): 16 − 21.

    Lin Xuchuan, Ye Lieping. Study on optimization of seismic design for RC frames based on member importance index [J]. Journal of Building Structures, 2012, 33(6): 16 − 21. (in Chinese)

    [22] 叶列平, Asad U Q, 马千里, 陆新征. 高强钢筋对框架结构抗震破坏机制和性能控制的研究[J]. 工程抗震与加固改造, 2006, 28(1): 18 − 24, 30. doi: 10.3969/j.issn.1002-8412.2006.01.005

    Ye Lieping, Asad U Q, Ma Qianli, Lu Xinzheng. Study on failure mechanism and seismic performance of passive control RC frame against earthquake [J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 18 − 24, 30. (in Chinese) doi: 10.3969/j.issn.1002-8412.2006.01.005

    [23] 钱稼茹, 李宁波, 赵作周, 纪晓东. 震后可快速恢复功能的双钢管混凝土柱试验研究[J]. 建筑钢结构进展, 2015, 17(1): 7 − 13.

    Qian Jiaru, Li Ningbo, Zhao Zuozhou, Ji Xiaodong. Experimental study on earthquake-resilient high strength concrete filled double-tube columns [J]. Progress in Steel Building Structures, 2015, 17(1): 7 − 13. (in Chinese)

    [24]

    Lin X, Okazaki T, Chung Y L, Nakashima M. Flexural performance of bolted built-up columns constructed of H-SA700 steel [J]. Journal of Constructional Steel Research, 2013, 82: 48 − 58. doi: 10.1016/j.jcsr.2012.11.015

    [25]

    Lin X, Chen Y, Yan J, Hu Y. Seismic behavior of welded beam-to-column joints of high-strength steel moment frame with replaceable damage-control fuses [J]. Journal of Structural Engineering, 2020, 146(8): 04020143. doi: 10.1061/(ASCE)ST.1943-541X.0002691

    [26] 曾勇. 双功能带缝剪力墙的受力及抗震性能分析 [D]. 北京: 清华大学, 2000.

    Zeng Yong. Non-linear and seismic response analysis for reinforced concrete dual function slitted shear wall [D]. Beijing: Tsinghua University, 2000. (in Chinese)

    [27] 张磊. 地震-连续倒塌综合韧性防御框架-支撑筒-伸臂体系研究 [D]. 北京: 清华大学, 2019.

    Zhang Lei. Study of seismic and progressive collapse resilient frame-braced tube-outrigger system [D]. Beijing: Tsinghua University, 2019. (in Chinese)

    [28] 王啸霆, 曲哲, 王涛. 损伤可控的塑性铰支墙抗震性能试验研究[J]. 土木工程学报, 2016, 49(增刊 1): 131 − 136.

    Wang Xiaoting, Qu Zhe, Wang Tao. Seismic behavior of damage-controlled plastic hinge-supported walls [J]. China Civil Engineering Journal, 2016, 49(Suppl 1): 131 − 136. (in Chinese)

    [29] 徐龙河, 张焱, 肖水晶. 底部铰支自复位钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2020, 37(6): 122 − 130. doi: 10.6052/j.issn.1000-4750.2019.04.0235

    Xu Longhe, Zhang Yan, Xiao Shuijing. Design and behavior study on bottom hinged self-centering reinforced concrete shear wall [J]. Engineering Mechanics, 2020, 37(6): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0235

    [30]

    Wang X T, Wang T, Qu Z. An experimental study of a damage-controllable plastic-hinge-supported wall structure [J]. Earthquake Engineering & Structural Dynamics, 2018, 47(3): 594 − 612.

    [31] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9): 11 − 19.

    Qu Zhe, Wada Akira, Ye Lieping. Seismic retrofit of frame structures using rocking wall system [J]. Journal of Building Structures, 2011, 32(9): 11 − 19. (in Chinese)

    [32]

    Qu Z, Wada A, Motoyui S, et al. Pin-supported walls for enhancing the seismic performance of building structures [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2075 − 2091.

    [33]

    Usami T, Wang C L, Funayama J. Developing high performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(4): 643 − 661.

    [34] 王佼姣, 石永久, 严红, 等. 低屈服点全钢防屈曲支撑抗震性能试验研究[J]. 土木工程学报, 2013, 46(10): 9 − 16.

    Wang Jiaojiao, Shi Yongjiu, Yan Hong, et al. Experimental study on the seismic behavior of all-steel buckling-restrained brace with low yield point [J]. China Civil Engineering Journal, 2013, 46(10): 9 − 16. (in Chinese)

    [35]

    Uang C M, Nakashima M, Tsai K C. Research and application of buckling-restrained braced frames [J]. International Journal of Steel Structures, 2004, 4(4): 301 − 313.

    [36]

    Sabelli R, Mahin S, Chang C. Seismic demands on steel braced frame buldings with buckling-restrained braces [J]. Engineering Structures, 2003, 25(5): 655 − 666. doi: 10.1016/S0141-0296(02)00175-X

    [37]

    Christopoulos C, Tremblay R, Kim H J, Lacerte M. Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation [J]. Journal of Structural Engineering, 2008, 134(1): 96 − 107. doi: 10.1061/(ASCE)0733-9445(2008)134:1(96)

    [38]

    Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-cetering energy dissipative steel braces [J]. Journal of Structural Engineering, 2008, 134(1): 108 − 120. doi: 10.1061/(ASCE)0733-9445(2008)134:1(108)

    [39]

    Chung H S, Moon B W, Lee S K, et al. Seismic performance of friction dampers using flexure of RC shear wall system [J]. The Structural Design of Tall and Special Buildings, 2009, 18(7): 807 − 822. doi: 10.1002/tal.524

    [40] 吕西林, 陈云, 蒋欢军. 新型可更换连梁研究进展[J]. 地震工程与工程振动, 2013, 33(1): 8 − 15.

    Lü Xilin, Chen Yun, Jiang Huanjun. Research progress in new replaceable coupling beams [J]. Engineering and Engineering Dynamics, 2013, 33(1): 8 − 15. (in Chinese)

    [41] 吕西林, 陈云, 蒋欢军. 可更换连梁保险丝抗震性能试验研究[J]. 同济大学学报(自然科学版), 2013, 41(9): 1318 − 1325. doi: 10.3969/j.issn.0253-374x.2013.09.007

    Lü Xilin, Chen Yun, Jiang Huanjun. Experimental study on seismic behavior of “fuse” of replaceable coupling beam [J]. Journal of Tongji University(Natural Science), 2013, 41(9): 1318 − 1325. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.09.007

    [42] 纪晓东, 马琦峰, 王彦栋, 钱稼茹. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6): 1 − 11.

    Ji Xiaodong, Ma Qifeng, Wang Yandong, Qian Jiaru. Cyclic tests of replaceable shear links in steel coupling beams [J]. Journal of Building Structures, 2014, 35(6): 1 − 11. (in Chinese)

    [43] 纪晓东, 王彦栋, 马琦峰, 钱稼茹. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 1 − 10.

    Ji Xiaodong, Wang Yandong, Ma Qifeng, Qian Jiaru. Experimental study on seismic behavior of replaceable steel coupling beams [J]. Journal of Building Structures, 2015, 36(10): 1 − 10. (in Chinese)

    [44]

    Smith R J, Willford M R. The damped outrigger concept for tall buildings [J]. The Structural Design of Tall and Special Buildings, 2007, 16(4): 501 − 517. doi: 10.1002/tal.413

    [45] 周颖, 吕西林, 张翠强. 消能减震伸臂桁架超高层结构抗震性能研究[J]. 振动与冲击, 2011, 30(11): 186 − 189. doi: 10.3969/j.issn.1000-3835.2011.11.038

    Zhou Ying, Lü Xilin, Zhang Cuiqiang. Seismic performance of a super-tall building with energy dissipation outriggers [J]. Journal of Vibration and Shock, 2011, 30(11): 186 − 189. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.11.038

    [46] 任重翠, 徐自国, 肖从真, 等. 防屈曲支撑在超高层建筑结构伸臂桁架中的应用[J]. 建筑结构, 2013, 43(5): 54 − 59, 96.

    Ren Chongcui, Xu Ziguo, Xiao Congzhen, et al. Application of unbonded brace in super high-rise structure with cantilever truss [J]. Building Structure, 2013, 43(5): 54 − 59, 96. (in Chinese)

    [47]

    Erochko J, Christopoulos C, Tremblay R, Kim H J. Shake table testing and numerical simulation of a self-centering energy dissipative braced frame [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(11): 1617 − 1635.

    [48]

    Xu L H, Zhang G, Xiao S J, Li Z X. Development and experimental verification of damage controllable energy dissipation beam to column connection [J]. Engineering Structures, 2019, 199: 109660. doi: 10.1016/j.engstruct.2019.109660

    [49]

    Peng H, Ou J P, Mahin S. Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection [J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106149. doi: 10.1016/j.soildyn.2020.106149

    [50]

    Banisheikholeslami A, Behnamfar F, Ghandil M. A beam-to-column connection with visco-elastic and hysteretic dampers for seismic damage control [J]. Journal of Constructional Steel Research, 2016, 117: 185 − 195. doi: 10.1016/j.jcsr.2015.10.016

    [51] 王佼姣. 低屈服点钢防屈曲支撑及其框架抗震性能研究 [D]. 北京: 清华大学, 2015.

    Wang Jiaojiao. Seismic performance on the buckling-restrained braces and buckling-restrained braced frames with low-yield-point steel [D]. Beijing: Tsinghua University, 2015. (in Chinese)

    [52] 杨青顺. 耗能伸臂桁架试验及设计方法研究 [D]. 北京: 清华大学, 2017.

    Yang Qingshun. Experimental and design method study of energy dissipating outriggers [D]. Beijing: Tsinghua University, 2017. (in Chinese)

    [53] 朱亚宁. 含耗能伸臂桁架的框架-核心筒结构性能分析及改进 [D]. 合肥: 合肥工业大学, 2018.

    Zhu Yaning. Performance analysis and optimization of frame-core tube structures with energy dissipation outtriggers[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)

    [54]

    Pasala D T R, Sarlis A A, Nagarajaiah S, et al. Adaptive negative stiffness: New structural modification approach for seismic protection [J]. Journal of Structural Engineering, 2013, 139(7): 1112 − 1123. doi: 10.1061/(ASCE)ST.1943-541X.0000615

    [55]

    Pasala D T R, Sarlis A A, Reinhorn A M, et al. Simulated bilinear-elastic behavior in a SDOF elastic structure using negative stiffness device: Experimental and analytical study [J]. Journal of Structural Engineering, 2014, 140(2): 04013049. doi: 10.1061/(ASCE)ST.1943-541X.0000830

    [56]

    Pasala D T R, Sarlis A A, Reinhorn A M, et al. Apparent weakening in SDOF yielding structures using a negative stiffness device: Experimental and analytical study [J]. Journal of Structural Engineering, 2015, 141(4): 04014130. doi: 10.1061/(ASCE)ST.1943-541X.0001077

    [57]

    Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative stiffness device for seismic protection of structures [J]. Journal of Structural Engineering, 2013, 139(7): 1124 − 1133. doi: 10.1061/(ASCE)ST.1943-541X.0000616

    [58]

    Shi X, Zhu S. Magnetic negative stiffness dampers [J]. Smart Materials and Structures, 2015, 24(7): 072002. doi: 10.1088/0964-1726/24/7/072002

    [59]

    Sun T, Lai Z, Nagarajaiah S, Li H. Negative stiffness device for seismic protection of smart base isolated benchmark building [J]. Structural Control and Health Monitoring, 2017, 24(11): e1968. doi: 10.1002/stc.1968

    [60]

    Wang M, Nagarajaiah S, Sun F F. Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness [J]. Journal of Structural Engineering, 2020, 146(12): 04020273. doi: 10.1061/(ASCE)ST.1943-541X.0002846

    [61] 龚微, 熊世树, 谭平, 郑鑫城. 拟负刚度磁流变智能隔震系统振动台试验研究[J]. 建筑结构学报, 2019, 40(12): 1 − 10.

    Gong Wei, Xiong Shishu, Tan Ping, Zheng Xincheng. Shaking table test of smart isolation system with magneto-rheological damper employing pseudo-negative-stiffness control algorithm [J]. Journal of Building Structures, 2019, 40(12): 1 − 10. (in Chinese)

    [62] 缪志伟, 叶列平, 吴耀辉, 等. 框架-核心筒高层混合结构抗震性能评价及破坏模式分析[J]. 建筑结构, 2009, 39(4): 1 − 6.

    Miao Zhiwei, Ye Lieping, Wu Yaohui, et al. Seismic performances and failure mode analysis of hybrid frame-core tube structures [J]. Building Structure, 2009, 39(4): 1 − 6. (in Chinese)

    [63] 滕军, 郭伟亮, 张浩, 李祚华. 斜交网格筒-核心筒结构地震非线性性能研究[J]. 土木工程学报, 2012, 45(8): 90 − 96.

    Teng Jun, Guo Weiliang, Zhang Hao, Li Zuohua. Study of the nonlinear seismic performance of diagrid tube-core tube structures [J]. China Civil Engineering Journal, 2012, 45(8): 90 − 96. (in Chinese)

    [64] 陈麟, 杨航, 吴珊瑚, 周云. 巨型型钢混凝土框架-核心筒超高层结构抗震性能与破坏模式分析[J]. 建筑结构, 2014, 44(2): 25 − 31.

    Chen Lin, Yang Hang, Wu Shanhu, Zhou Yun. Seismic performance and damage patterns of super high-rise mega SRC frame-core wall structure [J]. Building Structure, 2014, 44(2): 25 − 31. (in Chinese)

    [65]

    Lu X Z, Lu X, Guan H, et al. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building [J]. Journal of Constructional Steel Research, 2013, 82(3): 59 − 71.

    [66] 刘鹏远. 高层主次结构体系力学性能及地震失效模式研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Liu Pengyuan. Research on mechanical properties and seismic failure mode for high-rise primary-secondary structural system [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)

    [67] 曲哲. 摇摆墙-框架结构抗震损伤机制控制及设计方法研究 [D]. 北京: 清华大学, 2010.

    Qu Zhe. Study on seismic damage mechanism control and design of rocking wall-frame structures [D]. Beijing: Tsinghua University, 2010. (in Chinese)

    [68] 缪志伟. 钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究 [D]. 北京: 清华大学, 2009.

    Miao Zhiwei. Study on energy-based seismic design methodology for reinforced concrete frame-shear wall structures [D]. Beijing: Tsinghua University, 2009. (in Chinese)

    [69] 解琳琳. 巨柱-核心筒-伸臂超高层结构大震功能可恢复设计方法 [D]. 北京: 清华大学, 2016.

    Xie Linlin. Resilience-based design method for super tall mega column-core tube-outrigger buildings under maximum considered earthquake [D]. Beijing: Tsinghua University, 2016. (in Chinese)

    [70] 赵锐. 预制装配式钢筋混凝土结构塑性可控钢质梁柱节点研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Zhao Rui. Research on plastic controllable steel beam-column joints for precast reinforced concrete structures [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)

    [71] 康婷, 许高娲, 欧进萍. 承载-耗能铰节点装配式钢框架结构抗震弹塑性分析[J]. 地震工程与工程振动, 2018, 38(6): 43 − 51.

    Kang Ting, Xu Gaowa, Ou Jinping. Elasto-plastic analysis of prefabricated steel frame with bearing-energy dissipated joints against earthquake [J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(6): 43 − 51. (in Chinese)

    [72] 周颖, 肖意, 顾安琪. 自复位支撑-摇摆框架结构体系及其基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(10): 17 − 26.

    Zhou Ying, Xiao Yi, Gu Anqi. Self-centering braced rocking frame systems and displacement-based seismic design method [J]. Journal of Building Structures, 2019, 40(10): 17 − 26. (in Chinese)

    [73]

    Shoeibi S, Kafi M A, Gholhaki M. New performance-based seismic design method for structures with structural fuse system [J]. Engineering Structures, 2017, 132: 745 − 760. doi: 10.1016/j.engstruct.2016.12.002

    [74]

    Shoeibi S, Gholhaki M, Kafi M A. Simplified force-based seismic design procedure for linked column frame system [J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 87 − 101. doi: 10.1016/j.soildyn.2019.03.003

    [75]

    Zhai Z P, Guo W, Li Y Z, et al. An improved performance-based plastic design method for seismic resilient fused high-rise buildings [J]. Engineering Structures, 2019, 199: 109650. doi: 10.1016/j.engstruct.2019.109650

    [76]

    Yang T Y, Tung D P, Li Y J. Equivalent energy design procedure for earthquake resilient fused structures [J]. Earthquake Spectra, 2018, 34(2): 795 − 815. doi: 10.1193/122716EQS254M

    [77]

    Poon D, Hsiao L, Zhu Y, et al. Non-linear time history analysis for the performance based design of Shanghai Tower [C]// Structures Congress, 2011, 541 − 551.

    [78]

    Jiang H J, Fu B, Liu L E, Yin X W. Study on seismic performance of a super-tall steel-concrete hybrid structure [J]. The Structural Design of Tall and Special Buildings, 2014, 23(5): 334 − 349. doi: 10.1002/tal.1040

    [79]

    Fan H, Li Q S, Tuan A Y, Xu L H. Seismic analysis of the world's tallest building [J]. Journal of Constructional Steel Research, 2009, 65(5): 1206 − 1215. doi: 10.1016/j.jcsr.2008.10.005

    [80]

    Lu X L, Su N F, Zhou Y. Nonlinear time history analysis of a super-tall building with setbacks in elevation [J]. The Structural Design of Tall and Special Buildings, 2013, 22(7): 593 − 614. doi: 10.1002/tal.717

    [81]

    Lu X, Lu X Z, Guan H, Ye L P. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes [J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5): 705 − 723.

    [82]

    Lu X, Lu X Z, Zhang W K, Ye L P. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes [J]. Science China Technological Sciences, 2011, 54(10): 2549 − 2560. doi: 10.1007/s11431-011-4548-0

    [83]

    Lu X, Lu X Z, Guan H, Xie L L. Application of earthquake-induced collapse analysis in design optimization of a super-tall building [J]. The Structural Design of Tall and Special Buildings, 2016, 25(17): 926 − 946. doi: 10.1002/tal.1291

    [84]

    Lin X, Kato M, Zhang L, Nakashima M. Quantitative investigation on collapse margin of steel high-rise buildings subjected to extremely severe earthquakes [J]. Earthquake Engineering and Engineering Vibration, 2018, 17(3): 445 − 457. doi: 10.1007/s11803-018-0454-9

    [85]

    Bai Y T, Guan S Y, Lin X C, Mou B. Seismic collapse analysis of high-rise reinforced concrete frames under long-period ground motions [J]. The Structural Design of Tall and Special Buildings, 2019, 28(1): e1566. doi: 10.1002/tal.1566

    [86]

    Li J, Zhou H, Ding Y Q. Stochastic seismic collapse and reliability assessment of high-rise reinforced concrete structures [J]. The Structural Design of Tall and Special Buildings, 2018, 27(2): e1417. doi: 10.1002/tal.1417

    [87]

    Lu X Z, Tian Y, Cen S, et al. A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees [J]. Journal of Earthquake Engineering, 2018, 22(9): 1662 − 1682. doi: 10.1080/13632469.2017.1297269

    [88]

    Azghandi R R, Shakib H, Zakersalehi M. Numerical simulation of seismic collapse mechanisms of vertically irregular steel high-rise buildings [J]. Journal of Constructional Steel Research, 2020, 166: 105914. doi: 10.1016/j.jcsr.2019.105914

    [89] 卢啸. 超高巨柱-核心筒-伸臂结构地震灾变及抗震性能研究 [D]. 北京: 清华大学, 2013.

    Lu Xiao. Study on the collapse simulation and seismic performance of super tall mega column-core tube-outrigger buildings [D]. Beijing: Tsinghua University, 2013. (in Chinese)

    [90]

    Lu X, Lu X Z, Sezen H, Ye L P. Development of a simplified model and seismic energy dissipation in a super-tall building [J]. Engineering Structures, 2014, 67: 109 − 122. doi: 10.1016/j.engstruct.2014.02.017

    [91]

    Lu X Z, Xie L L, Yu C, Lu X. Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building [J]. Engineering Structures, 2016, 110: 116 − 126. doi: 10.1016/j.engstruct.2015.11.039

图(6)
计量
  • 文章访问数:  1967
  • HTML全文浏览量:  353
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-06-08
  • 网络出版日期:  2021-06-28
  • 刊出日期:  2022-04-30

目录

    /

    返回文章
    返回