基于广义Kelvin链钢管混凝土徐变研究

杨超, 陈梦成, 张明阳, 李骐, 方苇, 温清清

杨超, 陈梦成, 张明阳, 李骐, 方苇, 温清清. 基于广义Kelvin链钢管混凝土徐变研究[J]. 工程力学, 2022, 39(2): 200-207. DOI: 10.6052/j.issn.1000-4750.2021.01.0042
引用本文: 杨超, 陈梦成, 张明阳, 李骐, 方苇, 温清清. 基于广义Kelvin链钢管混凝土徐变研究[J]. 工程力学, 2022, 39(2): 200-207. DOI: 10.6052/j.issn.1000-4750.2021.01.0042
YANG Chao, CHEN Meng-cheng, ZHANG Ming-yang, LI Qi, FANG Wei, WEN Qing-qing. RESEARCH ON THE CREEP OF CONCRETE FILLED STEEL TUBULAR COLUMNS BASED ON THE GENERALIZED KELVIN CHAIN[J]. Engineering Mechanics, 2022, 39(2): 200-207. DOI: 10.6052/j.issn.1000-4750.2021.01.0042
Citation: YANG Chao, CHEN Meng-cheng, ZHANG Ming-yang, LI Qi, FANG Wei, WEN Qing-qing. RESEARCH ON THE CREEP OF CONCRETE FILLED STEEL TUBULAR COLUMNS BASED ON THE GENERALIZED KELVIN CHAIN[J]. Engineering Mechanics, 2022, 39(2): 200-207. DOI: 10.6052/j.issn.1000-4750.2021.01.0042

基于广义Kelvin链钢管混凝土徐变研究

基金项目: 国家自然科学基金项目(51878275)
详细信息
    作者简介:

    杨 超(1991−),男,江西南昌人,博士生,从事工程结构时变可靠性研究(E-mail: chaoyangyq@ecjtu.edu.cn)

    张明阳(1987−),男,江西抚州人,博士生,从事工程结构耐久性研究(E-mail: mingyang0805@126.com)

    李 骐(1993−),男,江西上饶人,博士生,从事工程结构耐久性研究(E-mail:leyiliqiyiqi@qq.com)

    方 苇(1989−),女,安徽合肥人,博士生,从事工程结构耐久性研究(E-mail: ww_fang@ecjtu.jx.cn)

    温清清(1992−),女,江西赣州人,博士生,从事工程结构耐久性研究(E-mail: qqwen@ecjtu.edu.cn)

    通讯作者:

    陈梦成(1962−),男,江西高安人,教授,博士,博导,从事重大工程材料和结构中安全性基础问题研究(E-mail: mcchen@ecjtu.edu.cn)

  • 中图分类号: TU398+.9

RESEARCH ON THE CREEP OF CONCRETE FILLED STEEL TUBULAR COLUMNS BASED ON THE GENERALIZED KELVIN CHAIN

  • 摘要: 混凝土徐变是混凝土材料本身固有的一个时变特性,是结构响应中一个重要组成部分,其计算方法通常是建立在单轴试验和理论基础上。为探讨钢管混凝土徐变特性,该文采用自制的压力自平衡混凝土徐变试验装置对混凝土圆柱和圆钢管混凝土柱进行了徐变试验,结果表明:钢管混凝土柱徐变变形要比普通混凝土柱的徐变变形小,在该文试验中两者相差接近50%,这可能是密闭钢管内核心混凝土无法与外界发生水分交换而不发生干燥收缩和干燥徐变以及钢管围压所致。根据粘弹性理论,引入多参数Kelvin链粘弹性元件模型,建立了求解单轴应力状态下混凝土徐变的Volterra型积分方程,模型参数近似表示为连续粘滞谱。通过离散时间变量t和分步积分,进一步得到了单轴应力状态下混凝土徐变应力-应变增量本构模型。依据徐变叠加原理,考虑Poisson效应,进一步将单轴应力状态下混凝土徐变应力-应变增量本构模型拓展到三轴应力状态,用于钢管混凝土徐变分析。对有限元商用软件Ansys进行二次开发,将反映三轴应力状态下混凝土徐变性能的本构方程引入Ansys提供的用户子程序Usermat中,并采用Fortran语言编程,从而实现了钢管混凝土徐变长期性能的有限元分析计算。将有限元数值解与试验结果进行对比分析,发现该文提出的模型是科学的和有效的。该文提出的方法将为混凝土徐变计算提供了另一条有效途径。
    Abstract: Concrete creep is an inherent time-dependent behavior of concrete and an important composition of structural responses. Its calculating method is usually established on the basis of uniaxial test and theory. To explore the creep behavior of concrete-filled steel tubular columns, the creep of circular concrete columns and concrete filled circular steel tubular (CFST) columns were measured by a self-made and self-balanced loading device. The results show that the creep deformation of CFST columns is smaller than that of concrete columns. In the present concrete creep tests, the maximum difference between the two aforementioned creep deformations was close to 50%. It is attributed to the fact that the core concrete cannot exchange moisture with its external atmosphere environment so that no dry shrinkage and creep of the core concrete occurred. It is also attributed to the confining pressure of the steel tube. According to the theory of viscoelasticity, a Volterra integral equation for solving the concrete creep under uniaxial stress condition was established by introducing a model consisting of a multi-parameter Kelvin element chain. The model parameters were approximately expressed as a successive retardation spectrum. Therefore, the constitutive relationship of concrete creep stress and strain increments under uniaxial stress condition was derived by discretizing the time variable t and integration by parts. Based on the principle of creep superposition and the Poisson effects, the constitutive model of the concrete creep stress and strain increments under uniaxial stress condition state was extended to a multiaxial stress state to analyze the CFST creep. The commercial finite element analysis software Ansys was secondarily-developed. The constitutive equation under multiaxial stress state for concrete creep performance was compiled with the Fortran language and introduced into the user subroutine Usermat of Ansys. Finally, the finite element numerical analysis for the long-term creep performance of CFST columns was carried out. Comparing the numerical solutions with the test results, it is found that the proposed method provides another effective approach to the analysis of concrete creep.
  • 图  1   广义Kelvin混凝土徐变模型

    Figure  1.   Generalized Kelvin chain for concrete creep model

    图  2   文献[10]钢管混凝土短柱有限元模型及计算验证

    Figure  2.   Finite element model and calculation validations of concrete filled steel tube in [10]

    图  3   文献[28]钢管混凝土短柱计算验证

    Figure  3.   Calculation validations of concrete filled steel tube in [28]

    图  4   试验装置

    Figure  4.   Test device

    图  5   长期荷载试验过程中温度与湿度变化

    Figure  5.   Variation of temperature and humidity measured during long-term test

    图  6   试验结果与计算验证

    Figure  6.   Test results and calculation verification

    表  1   徐变试验试件一览表

    Table  1   List of creep test specimens

    序号试件编号t/dts/mm (实测值)NL/kNε0
    素混凝土C-P-135a13580.44−227.5
    C-P-135b13580.44−126.75
    钢管混凝土C-S-135a1353.648282.31−360.5
    C-S-135b1353.688282.31−419.67
    注:“C-P-135a”中C表示为“creep test”,P表示为“plain concrete”,S表示为“concrete filled steel tube”;a与b为两个平行试件;t为持荷时间;ts为钢管厚度实测值;NL为试件实际施加荷载值;ε0为加载时刻弹性应变。
    下载: 导出CSV
  • [1]

    Han L H, Hou C, Hua Y X. Concrete-filled steel tubes subjected to axial compression: Life-cycle based performance [J]. Journal of Constructional Steel Research, 2020, 170: 106063. doi: 10.1016/j.jcsr.2020.106063

    [2]

    Reliability calibration for the design of multiple-chord CFST trusses by advanced analysis[J]. Structural Safety, 2021, 89: 102051.

    [3] 王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73 − 85. doi: 10.6052/j.issn.1000-4750.2020.04.0259

    Wang Wenda, Chen Runting. Analysis on the fire resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage [J]. Engineering Mechanics, 2021, 38(3): 73 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0259

    [4] 陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34 − 43. doi: 10.6052/j.issn.1000-4750.2019.05.ST01

    Chen Mengcheng, Fang Wei, Huang Hong. Static behavior of corroded concrete-filled steel Tubular members by simulating acid rain solution [J]. Engineering Mechanics, 2020, 37(2): 34 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST01

    [5] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114 − 121. doi: 10.6052/j.issn.1000-4750.2018.07.0397

    Wu Haipeng, Cao Wanlin, Dong Hongying. Axial compressive strength calculation based on the 'unified theory' for special-shaped cft columns with multiple cavities [J]. Engineering Mechanics, 2019, 36(8): 114 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0397

    [6] 钟善铜. 钢管混凝土结构[M]. 北京: 清华大学出版社, 2003.

    Zhong Shantong. Concrete-filled steel tube structure [M]. Beijing: Tsinghua University Press, 2003. (in Chinese)

    [7] 王元丰. 钢管混凝土徐变理论[M]. 北京: 科学出版社, 2013.

    Wang Yuanfeng. Creep theory of concrete-filled steel tube [M]. Beijing: Science Press, 2013. (in Chinese)

    [8]

    Hua Y X, Han L H, Hou C. Behaviour of square CFST beam-columns under combined sustained load and corrosion: FEA modelling and analysis [J]. Journal of Constructional Steel Research, 2019, 157: 245 − 259. doi: 10.1016/j.jcsr.2019.01.027

    [9] 花幼星, 侯超, 韩林海. 氯离子腐蚀环境下钢管混凝土轴拉构件受力性能研究[J]. 工程力学, 2015, 32(增刊 1): 149 − 152, 158. doi: 10.6052/j.issn.1000-4750.2014.05.S012

    Hua Youxing, Hou Chao, Han Linhai. Behavior of CFST tensile members subjected to chloride corrosion [J]. Engineering Mechanics, 2015, 32(Suppl 1): 149 − 152, 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S012

    [10]

    Chen B, Lai Z, Lai X, et al. Creep-prediction models for concrete-filled steel tube arch bridges [J]. Journal of Bridge Engineering, 2017, 22(7): 04017027. doi: 10.1061/(ASCE)BE.1943-5592.0001051

    [11]

    Wang Y Y, Geng Y, Chen J, et al. Testing and analysis on nonlinear creep behaviour of concrete-filled steel tubes with circular cross-section [J]. Engineering Structures, 2019, 185: 26 − 46. doi: 10.1016/j.engstruct.2019.01.065

    [12] 郝兆峰, 张戎令, 王起才, 等. 钢管混凝土缺陷对徐变性能的影响[J]. 复合材料学报, 2020, 37(5): 201 − 209.

    Hao Zhaofeng, Zhang Rongling, Wang Qicai, et al. Effect of concrete filled steel tube defect on creep property [J]. Journal of Composite Materials, 2020, 37(5): 201 − 209. (in Chinese)

    [13] 刘伟, 刘琼祥, 艾武波, 等. 钢管再生混合混凝土徐变性能试验研究[J]. 建筑结构学报, 2019, 40(6): 175 − 183.

    Liu Wei, Liu Qiongxiang, Ai Wubo, et al. Experimental study on creep behavior of steel tubular columns filled with compound concrete made of demolished concrete lumps and fresh concrete [J]. Journal of Building Structures, 2019, 40(6): 175 − 183. (in Chinese)

    [14] 肖思柯, 耿悦, 刘昌永, 等. 考虑徐变非线性的钢管混凝土柱徐变稳定承载力计算方法[J]. 建筑结构学报, 2019, 40(增刊 1): 271 − 277.

    Xiao Sike, Geng Yue, Liu Changyong, et al. Prediction equation for creep buckling capacity of concrete-filled steel tubular columns considering nonlinear creep [J]. Journal of Building Structures, 2019, 40(Suppl 1): 271 − 277. (in Chinese)

    [15] 丁敏, 汪友弟, 代春辉, 等. 钢管混凝土轴心受压构件的徐变预测模型及其徐变性能分析[J]. 工程力学, 2017, 34(6): 166 − 177. doi: 10.6052/j.issn.1000-4750.2016.01.0022

    Ding Min, Wang Youdi, Dai Chunhui, et al. Creep calculation and behavior analysis of concrete-filled steel tubular member under axial compression [J]. Engineering Mechanics, 2017, 34(6): 166 − 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.01.0022

    [16]

    Neville A M, Dilger W H, Brooks J J. Creep of plain and structural concrete [M]. London, New York: Construction Press, 1983.

    [17]

    Gopalakrishnan B K S, Ghali A M N A A. A hypothesis on mechanism of creep of concrete with reference to multiaxial compression [J]. Am Concrete Inst Journal & Proceedings, 1970, 67(3): 29 − 35.

    [18] 王元丰, 韩冰. 钢管混凝土轴心受压构件的徐变分析[J]. 中国公路学报, 2000(2): 57 − 60. doi: 10.3321/j.issn:1001-7372.2000.02.014

    Wang Yuanfeng, Han Bing. Creep analysis of axially compressed concrete filled steel tubular members [J]. Chinese Journal of Highways, 2000(2): 57 − 60. (in Chinese) doi: 10.3321/j.issn:1001-7372.2000.02.014

    [19]

    Wang Y, Zhao R. Experimental study on time-dependent behavior of concrete filled steel tubes in ambient environment [J]. KSCE Journal of Civil Engineering, 2019, 23(1): 200 − 209. doi: 10.1007/s12205-018-1070-y

    [20]

    Li S, Yang Y, Wen W, et al. Theoretical framework for creep effect analysis of axially loaded short CFST columns under high stress levels [J]. Advances in Civil Engineering, 2020, 2020: 5694630.

    [21] 张电杰, 王元丰, 雷扬. 钢管混凝土轴心受压短柱徐变模型研究[J]. 土木工程学报, 2010(增刊 2): 246 − 251.

    Zhang Dianjie, Wang Yuanfeng, Lei Yang. A new creep model for concrete filled steel tube columns under axial compression [J]. Journal of Civil Engineering, 2010(Suppl 2): 246 − 251. (in Chinese)

    [22]

    Charpin L, Le Pape Y, Coustabeau E, et al. A 12 year EDF study of concrete creep under uniaxial and biaxial loading [J]. Cement and Concrete Research, 2018, 103: 140 − 159. doi: 10.1016/j.cemconres.2017.10.009

    [23] 傅强, 谢友均, 龙广成, 等. 混凝土三轴蠕变统计损伤模型研究[J]. 工程力学, 2013, 30(10): 205 − 210, 218. doi: 10.6052/j.issn.1000-4750.2012.07.0474

    Fu Qiang, Xie Youjun, Long Guangcheng, et al. Study on statistical damage model of tiuaxial creep of concrete [J]. Engineering Mechanics, 2013, 30(10): 205 − 210, 218. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.07.0474

    [24] 李世伟, 杨永清, 陈远久. 混凝土结构三维非线性徐变效应分析方法[J]. 中南大学学报(自然科学版), 2019, 50(3): 704 − 711. doi: 10.11817/j.issn.1672-7207.2019.03.025

    Li Shiwei, Yang Yongqing, Chen Yuanjiu. 3D nonlinear creep analysis method for concrete structures [J]. Journal of Central South University (Science and Technology), 2019, 50(3): 704 − 711. (in Chinese) doi: 10.11817/j.issn.1672-7207.2019.03.025

    [25]

    Jirásek M, Bazant Z P. Inelastic analysis of structures [M]. London, UK, and New York: John Wiley & Sons, 2001.

    [26]

    Yu Q, Bazant Z P, Wender R, Su Q. Improved algorithm for efficient and realistic creep analysis for large creep-sensitive concrete structures [J]. ACI Structural Journal, 2012, 109(5): 665 − 675.

    [27]

    ACI Committee 209, Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (ACI 209.2R-08) [R]. American Concrete Institute, Farmington Hills, 2008.

    [28] 谭素杰, 齐加连. 长期荷载对钢管混凝土受压构件强度影响的实验研究[J]. 哈尔滨建筑工程学院学报, 1987(2): 15 − 29.

    Tan Sujie, Qi Jialian. Experimental investigation of the effects on the strength of concrete filled steel tubular compressive members under sustanding load [J]. Journal of Harbin Institute of Architecture and Engineering, 1987(2): 15 − 29. (in Chinese)

    [29] GB/T 228.1−2010, 金属材料拉伸试验第一部分: 室温试验方法[S]. 北京: 中华人民共和国住房和城乡建设部, 2010.

    GB/T 228.1−2010, Tensile test of metallic materials part I: test method at room temperature [S]. Beijing: Ministry of Housing and Urban-Rural Development, PRC, 2010. (in Chinese)

    [30] GB/T 50082−2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中华人民共和国住房和城乡建设部, 2009.

    GB/T 50082−2009, Standard of test methods for long-term performance and durability of ordinary concrete [S]. Beijing: Ministry of Housing and Urban-Rural Development, PRC, 2009. (in Chinese)

图(6)  /  表(1)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  180
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2022-01-31

目录

    /

    返回文章
    返回