Loading [MathJax]/jax/output/SVG/jax.js

拟静力作用下群钉连接件抗剪性能研究

赵根田, 侯智译, 高鹏, 王达

赵根田, 侯智译, 高鹏, 王达. 拟静力作用下群钉连接件抗剪性能研究[J]. 工程力学, 2020, 37(7): 201-213. DOI: 10.6052/j.issn.1000-4750.2019.09.0513
引用本文: 赵根田, 侯智译, 高鹏, 王达. 拟静力作用下群钉连接件抗剪性能研究[J]. 工程力学, 2020, 37(7): 201-213. DOI: 10.6052/j.issn.1000-4750.2019.09.0513
ZHAO Gen-tian, HOU Zhi-yi, GAO Peng, WANG Da. STUDY ON SHEAR PERFORMANCE OF GROUP STUD CONNECTOR UNDER THE QUASI-STATIC LOAD[J]. Engineering Mechanics, 2020, 37(7): 201-213. DOI: 10.6052/j.issn.1000-4750.2019.09.0513
Citation: ZHAO Gen-tian, HOU Zhi-yi, GAO Peng, WANG Da. STUDY ON SHEAR PERFORMANCE OF GROUP STUD CONNECTOR UNDER THE QUASI-STATIC LOAD[J]. Engineering Mechanics, 2020, 37(7): 201-213. DOI: 10.6052/j.issn.1000-4750.2019.09.0513

拟静力作用下群钉连接件抗剪性能研究

基金项目: 国家自然科学基金项目(51268042);内蒙古自然科学基金项目(2016MS0546)
详细信息
    作者简介:

    侯智译(1993−),男,辽宁人,硕士生,主要从事钢结构及钢与混凝土组合结构研究(E-mail: houzhiyi2018@126.com)

    高 鹏(1979−),男,辽宁人,讲师,博士,主要从事钢结构及钢与混凝土组合结构研究(E-mail: gaop182@163.com)

    王 达(1992−),男,黑龙江人,硕士生,主要从事钢结构及钢与混凝土组合结构研究(E-mail: 874113091@qq.com)

    通讯作者:

    赵根田(1962−),男,山西人,教授,博士,硕导,主要从事钢结构及钢与混凝土组合结构研究(E-mail: zhaogentian93110@sina.com)

  • 中图分类号: TU398.9;TU317.1

STUDY ON SHEAR PERFORMANCE OF GROUP STUD CONNECTOR UNDER THE QUASI-STATIC LOAD

  • 摘要: 为研究低周往复荷载作用下群钉连接件的劣化过程和退化机理,以栓钉直径、混凝土强度等级、加载方式为参数设计9个试件进行试验,并采用ABAQUS进行精细分析,研究群钉抗剪连接件的破坏模式、刚度退化、损伤累积、抗剪承载力及能量耗散等指标。结果表明:混凝土强度相同时,试件的抗剪承载力随栓钉直径的增加而提高,而抗剪刚度和能量耗散等指标变化不明显。对于直径较大的栓钉,各项性能指标还会出现劣化。混凝土强度增加,试件的抗剪承载力和抗剪刚度提高,耗能增加,滑移值减小。低应力循环加载时,试件较早出现损伤累积,其损伤累积速度随栓钉直径的增大而增加。高应力循环加载时,试件表现出损伤累积滞后现象,在第3个循环节开始出现损伤快速累积。群钉多层排列时,栓钉传力不均匀,靠近加载端的栓钉承担的剪力大于其他栓钉。当混凝土强度在C35和C45之间时,建议采用直径16 mm的栓钉与之搭配。
    Abstract: To study the deterioration process and degradation mechanism of stud connectors under low-cycle reciprocating load, nine specimens were designed with the stud diameter, concrete strength and loading scheme as the parameters. The specimens were subjected to quasi-static low-cycle reciprocating load. Based on the experimental results, the model performance was simulated by the finite element software ABAQUS. The failure mode, stiffness degradation, damage accumulation and energy dissipation performance of stud shear connectors were analyzed. The results show that when the concrete strength is the same, the shear strength of the specimen increases with the increase of the diameter of the bolts. The effect on the shear stiffness and energy dissipation performance is not obvious. With studs of a large diameter, the performance index of the specimen will decline. The increase in concrete strength can improve the shear strength, shear stiffness and energy dissipation of the specimen, but the displacement of the specimens is decreased. When a reciprocating cycle is loaded at a low stress, early damage accumulation occurs in the test. The speed of injury accumulation increases with the increase of the diameter of the bolts. When a high stress cycle is loaded, the test shows an accumulation lag of damage, and rapid damage accumulation begins in the third cycle section. When the group studs are arranged in multiple layers, the shear force of the studs near the loading end is greater than that of the other studs as a result of the uneven transfer among the studs. When the concrete strength is between C35 and C45, it is recommended to use studs of a diameter of 16 mm to match it.
  • 图  1   试件详图 /mm

    Figure  1.   Specimen details

    图  2   加载装置

    Figure  2.   Loading device

    图  3   典型破坏现象

    Figure  3.   Typical failure modes

    图  4   荷载-滑移曲线

    Figure  4.   Load-displacement curves

    图  5   混凝土强度不同骨架曲线对比

    Figure  5.   Comparison of skeleton curves of different concrete strengths

    图  6   栓钉直径不同骨架曲线对比

    Figure  6.   Comparison of skeleton curves with different stud diameters

    图  7   刚度退化曲线

    Figure  7.   Stiffness degradation curves

    图  8   各级循环残余变形量

    Figure  8.   Residual deformation at all levels

    图  9   材料本构关系

    Figure  9.   Constitutive relationship of materials

    图  10   网格划分图

    Figure  10.   Grid division diagram

    图  11   试验与模拟骨架曲线

    Figure  11.   Skeleton curves of test and simulation

    图  12   MS-1应力云图

    Figure  12.   Stress cloud diagram of MS-1

    图  13   MS-1位移云图

    Figure  13.   Displacement cloud diagram of MS-1

    图  14   MS-2应力、位移云图

    Figure  14.   MS-2 stress and displacement cloud diagram

    图  15   MS-3应力、位移云图

    Figure  15.   MS-3 stress and displacement cloud diagram

    图  16   MS-4应力、位移云图

    Figure  16.   MS-4 stress and displacement cloud diagram

    图  17   MS-5应力云图

    Figure  17.   MS-5 stress cloud diagram

    表  1   试件参数

    Table  1   Specimen parameters

    试件编号混凝土立方体
    抗压强度fcu/MPa
    栓钉直径/
    mm
    加载方式栓钉群抗剪
    承载力Pu/kN
    SI-135.213方案1198
    SI-235.216方案1300
    SI-335.219方案1426
    SII-135.213方案2198
    SII-235.216方案1300
    SII-335.219方案1426
    SIII-146.313方案2198
    SIII-246.316方案2300
    SIII-346.319方案2426
    下载: 导出CSV

    表  2   钢材性能试验结果

    Table  2   Test results of steel properties

    钢材弹性模量
    Es/MPa
    屈服强度
    fy/MPa
    抗拉强度
    fu/MPa
    伸长率
    δ/(%)
    I22a1.96×105319.26456.1029.38
    Φ82.23×105406.74474.5328.64
    下载: 导出CSV

    表  3   加载方式

    Table  3   Loading schemes

    循环节加载方案1加载方案2
    10.7Pu1.3Pu
    2Pu1.3Pu+ 20 kN
    31.3Pu1.3Pu+ 40 kN
    41.3Pu+ 20 kN
    51.3Pu+ 40 kN
    注:0.7PuPu、1.3Pu、1.3Pu+20 kN分别称为1、2、3、4循环节。依此类推。
    下载: 导出CSV

    表  4   试件试验结果

    Table  4   Test results of specimens

    试件编号破坏荷载/kN极限滑移/mm滑移与栓钉
    直径比
    破坏形态
    SI-12602.080.16
    SI-23902.310.14
    SI-34303.110.16
    SII-13001.870.14
    SII-23903.090.19
    SII-35603.470.18
    SIII-12801.460.11
    SIII-24301.880.12
    SIII-35802.950.16
    下载: 导出CSV

    表  5   各级循环能量耗散系数E汇总

    Table  5   Summary of energy dissipation coefficient E at all circulating levels

    试件编号荷载等级12345678910平均值
    SI-10.7Pu1.211.071.041.001.020.951.131.010.960.891.03
    Pu0.820.770.770.820.810.790.740.740.770.750.78
    0.7Pu1.631.441.611.701.381.291.231.341.171.761.35
    1.411.231.391.091.091.251.241.121.261.28
    SI-2Pu0.970.890.910.830.810.870.940.850.850.840.85
    0.830.880.820.830.800.770.810.770.780.85
    1.3Pu0.840.830.840.830.83
    0.7Pu1.031.000.970.910.910.850.970.950.991.010.90
    SI-30.910.850.840.800.760.810.790.880.960.90
    Pu0.830.740.750.770.690.690.680.690.690.720.70
    0.680.670.660.670.660.660.77
    SII-11.3Pu0.780.780.730.760.960.720.740.670.690.660.75
    1.3Pu +20 kN0.660.700.680.660.670.680.640.630.630.640.66
    1.3Pu +40 kN0.760.76
    SII-20.7Pu1.421.751.161.331.501.491.221.281.251.071.35
    Pu0.960.960.940.850.870.860.860.850.850.920.89
    1.3Pu0.850.800.790.81
    SII-30.7Pu1.581.431.121.281.251.131.201.291.061.181.25
    Pu0.820.790.760.770.740.730.730.740.720.690.75
    1.3Pu0.780.800.79
    SIII-11.3Pu1.201.121.030.971.121.020.960.950.940.881.02
    1.3Pu +20 kN0.900.920.950.910.880.91
    SIII-21.3Pu1.151.101.131.061.000.880.920.850.870.900.99
    1.3Pu +20 kN0.860.830.900.910.890.840.870.830.810.830.86
    1.3Pu +40 kN0.820.780.820.810.870.780.790.820.800.81
    SIII-31.3Pu0.810.730.710.710.710.730.750.700.720.720.73
    1.3Pu +20 kN0.710.720.720.720.72
    下载: 导出CSV

    表  6   有限元模拟参数

    Table  6   Finite element method simulation parameters

    试件编号混凝土强度等级加载方式栓钉排列方式
    MS-1C40方案2单列3层
    MS-2C40方案1单列3层
    MS-3C50方案2单列3层
    MS-4C40推出单列3层
    MS-5C40方案2双列单层
    MS-6C50方案2双列单层
    MS-7C40方案1双列单层
    MS-8C50方案1双列单层
    下载: 导出CSV

    表  7   有限元模拟结果

    Table  7   Finite element method simulation results

    试件编号最大荷载/
    kN
    单钉平均
    承载力/kN
    滑移值/
    mm
    割线刚度/
    (kN/mm)
    SⅢ-243071.61.88038.1
    MS-143071.61.78340.2
    MS-239065.02.08531.2
    MS-343071.61.57945.3
    MS-448080.01.50053.3
    MS-531679.03.37023.4
    MS-629874.62.38031.3
    MS-731779.33.82020.8
    MS-831980.02.85028.1
    下载: 导出CSV
  • [1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3 − 8. doi: 10.3321/j.issn:1000-131X.1999.02.001

    Nie Jianguo, Yu Zhiwu. Research and practice of composite steel-concrete beams in China [J]. China Civil Engineering Journal, 1999, 32(2): 3 − 8. (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.02.001

    [2] 陈忠汉, 胡夏闽. 钢-混凝土组合结构设计[M]. 北京: 中国建筑工业出版社, 2009: 179.

    Chen Zhonghan, Hu Xiamin. Design of steel-concrete composite structure [M]. Beijing: China Architecture & Building Press, 2009: 179. (in Chinese)

    [3] 聂建国, 王宇航. 钢-混凝土组合梁疲劳性能研究综述[J]. 工程力学, 2012, 29(6): 1 − 11.

    Nie Jianguo, Wang Yuhang. Research status on fatigue behavior of steel-concrete composite beams [J]. Engineering Mechanics, 2012, 29(6): 1 − 11. (in Chinese)

    [4] 陈宝春, 陈津凯. 钢管混凝土内栓钉抗剪承载力试验研究[J]. 工程力学, 2016, 33(2): 66 − 73.

    Chen Baochun, Chen Jinkai. Experimental studies on shear-bearing capacity of headed stud in concrete-filled steel tube [J]. Engineering Mechanics, 2016, 33(2): 66 − 73. (in Chinese)

    [5] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89 − 96.

    Yang Yong, Chen Yang. Experimental study on the shear capacity of PBL shear connectors [J]. Engineering Mechanics, 2018, 35(9): 89 − 96. (in Chinese)

    [6] 刘君平, 陈津凯, 陈宝春. 钢管混凝土桁肋内栓钉相贯节点受力行为试验研究[J]. 工程力学, 2017, 34(9): 150 − 157.

    Liu Junping, Chen Jinkai, Chen Baochun. Experimental studies on load-transferring mechanism of CFST directly-welded K-joints with studs [J]. Engineering Mechanics, 2017, 34(9): 150 − 157. (in Chinese)

    [7] 陈津凯, 陈宝春, 刘君平. 钢管混凝土多排多列内栓钉受剪性能[J]. 工程力学, 2017, 34(6): 178 − 189.

    Chen Jinkai, Chen Baochun, Liu Junping. Shear performance of multi-studs between steel tube and core concrete [J]. Engineering Mechanics, 2017, 34(6): 178 − 189. (in Chinese)

    [8] 胡夏闽, 张婧, 张冰, 等. H型钢腹板焊接栓钉的 部分外包混凝土组合构件纵向受剪性能试验研究[J]. 建筑结构学报, 2018, 39(3): 158 − 166.

    Hu Xiamin, Zhang Jing, Zhang Bing, et al. Longitudinal shear behavior in partially concrete encased composite members with H-web welded stud [J]. Journal of Building Structures, 2018, 39(3): 158 − 166. (in Chinese)

    [9]

    Okada J, Yoda T, Lebet J P. A study of the grouped arrangement of stud connectors on the shear strength behavior [J]. Journal of Structural Mechanics and Earthquake, 2015, 23(1): 75 − 89.

    [10]

    Xu C, Su Q T, Sugiura K. Mechanism study on the low cycle fatigue behavior of group studs shear connectors in steel-concrete composite bridges [J]. Journal of Constructional Steel Research, 2017, 138: 196 − 207. doi: 10.1016/j.jcsr.2017.07.006

    [11]

    Bonillaa J, Bezerrab L M, Mirambellc E. Resistance of stud shear connectors in composite beams using profiled steel sheeting [J]. Engineering Structure, 2019, 187: 478 − 489.

    [12] 汪炳, 黄侨, 刘小玲. 疲劳荷载作用下栓钉连件的抗剪承载力退化规律[J]. 哈尔滨工业大学学报, 2016, 48(9): 76 − 82.

    Wang Bing, Huang Qiao, Liu Xiaoling. Shear capacity degradation law of stud connectors under fatigue loading [J]. Journal of Harbin Institute of Technology, 2016, 48(9): 76 − 82. (in Chinese)

    [13] 刘界鹏, 周保旭, 余洁, 等. 装配整体式钢-混凝土组合梁栓钉抗剪连接件受力性能试验研究[J]. 建筑结构学报, 2017, 38(增刊1): 337 − 341.

    Liu Jiepeng, Zhou Baoxu, Yu Jie, et al. Experimental study on mechanical behavior of shear studs in assembled monolithic steel-concrete composite beam [J]. Journal of Building Structures, 2017, 38(Suppl1): 337 − 341. (in Chinese)

    [14] 梁友腾.栓钉抗剪连接件重复荷载下的性能研究[D]. 包头: 内蒙古科技大学, 2017: 70.

    Liang Youteng. Study on mechanical behavior of the shear resistance capacity of stud shear connectors under repeated load [D]. Baotou: Inner Mongolia University of Science and Technology, 2017: 70. (in Chinese)

    [15] 薛伟辰, 丁敏, 王骅, 等. 单调荷载下栓钉连接件受剪性能试验研究[J]. 建筑结构学报, 2009, 30(1): 95 − 100. doi: 10.3321/j.issn:1000-6869.2009.01.014

    Xue Weichen, Ding Min, Wang Hua, et al. Experimental studies on behavior of stud shear connectors under monotonic loads [J]. Journal of Building Structures, 2009, 30(1): 95 − 100. (in Chinese) doi: 10.3321/j.issn:1000-6869.2009.01.014

    [16] 刘诚, 樊健生, 聂建国, 等. 钢-超高性能混凝土组合桥面系中栓钉连接件的疲劳性能研究[J]. 中国公路学报, 2017, 30(1): 139 − 146.

    Liu Cheng, Fan Jiansheng, Nie Jianguo, et al. Fatigue performance research of headed studs in steel and ultra-high performance concrete composite deck [J]. China Journal of Highway and Transport, 2017, 30(1): 139 − 146. (in Chinese)

    [17] 丁发兴, 倪鸣, 龚永智, 等. 栓钉剪力连接件滑移性能试验研究及受剪承载力计算[J]. 建筑结构学报, 2014, 35(9): 98 − 106.

    Ding Faxing, Ni Ming, Gong Yongzhi, et al. Experimental study on slip behavior and calculation of shear bearing capacity for shear stud connectors [J]. Journal of Building Structures, 2014, 35(9): 98 − 106. (in Chinese)

    [18]

    Bode H, Leffer A, Mensinger M. The influence of the stress range history on the fatigue behavior of headed studs [C]//Proceedings of the Conference: Composite Construction in Steel and Concrete IV. Reston, Virginia: American Society of Civil Engineers, 2000: 51 − 62,

    [19] 谷利雄, 丁发兴, 张鹏, 等. 钢-混组合简支梁滞回性能非线性有限元分析[J]. 工程力学, 2013, 30(1): 301 − 30.

    Gu Lixiong, Ding Faxing, Zhang Peng, et al. Nonlinear finite element analysis for hysteresis behaviors of simply supported steel-concrete composite beam [J]. Engineering Mechanics, 2013, 30(1): 301 − 30. (in Chinese)

  • 期刊类型引用(25)

    1. 冯超. 栓钉在型钢—混凝土组合结构中的抗拔性能研究. 铜陵职业技术学院学报. 2025(02) 百度学术
    2. 张玉杰, 岑梓聪, 赵煜乾, 伦佩浈, 谭竣升, 刘英炫, 杨永民. 钢-UHPC组合梁桥中高强螺栓群栓效应机理. 仲恺农业工程学院学报. 2025(04) 百度学术
    3. 郭京京,刘世忠,栗振锋,刘世明,毛敏,张俊豪,舒春生. 集簇式钢纤维混凝土栓钉-橡胶连接件抗剪承载力折减系数计算方法. 铁道标准设计. 2025(02): 96-103 . 百度学术
    4. 刘俊辉,张龙涛,胡淑军,黄海,邵铁峰. 腹板开洞型抗剪连接件力学性能有限元分析. 南昌大学学报(工科版). 2024(01): 53-60 . 百度学术
    5. 陈英,唐晖. 钢混组合结构大直径栓钉的群钉效应研究. 交通科学与工程. 2024(03): 100-107 . 百度学术
    6. 高湛,赵李源,程亮. 活性粉末混凝土空心剪力墙抗震性能试验研究. 武汉大学学报(工学版). 2024(S1): 129-137 . 百度学术
    7. 章谊,肖启晟,邓亮,王竹君. 桩柱一体结构施工技术研究. 建筑施工. 2023(01): 10-14 . 百度学术
    8. 苏永贵,杜景余. 基于有限元的钢混组合索塔中群钉连接件力学性能分析. 建筑技术. 2023(09): 1098-1102 . 百度学术
    9. 马亚飞,周彪,王磊,张建仁. 承压型组合剪力键剪切性能试验与承载力计算. 工程力学. 2023(11): 120-129 . 本站查看
    10. 王秋维,赵航,史庆轩,王璐. 内置非贯通型钢STRC柱压弯承载力计算研究. 工程力学. 2023(11): 179-189+205 . 本站查看
    11. 任万敏,温宗意,王亮,卫星,王慧君. 钢-混组合结构抗剪栓钉的群钉效应研究. 铁道标准设计. 2023(12): 103-109 . 百度学术
    12. 武芳文,冯彦鹏,戴君,王广倩,张景峰. 钢-UHPC组合结构中栓钉剪力键力学性能研究. 工程力学. 2022(02): 222-234+243 . 本站查看
    13. 王哲,刘世忠,王佳伟,吴奇洋,郜晋生,白旭阳,吴旷旷. SFRC栓钉-橡胶连接件力学性能非线性有限元分析. 铁道勘察. 2022(01): 67-70 . 百度学术
    14. 李鹏举,刘光明,徐彬,王琪,吕彬. 型钢混凝土斜柱的群钉连接件受力性能分析. 山西建筑. 2022(10): 10-15 . 百度学术
    15. 徐朋静,钟瑾,黄海,王秋慧,胡淑军. 十字带侧板型抗剪连接件受剪性能试验研究. 世界地震工程. 2022(02): 121-129 . 百度学术
    16. 徐晨,肖涵,王巍. 超高性能混凝土组合桥面板集群化短焊钉抗疲劳特性. 同济大学学报(自然科学版). 2022(05): 667-677 . 百度学术
    17. 范亮,赵富裕,李鸿岩. 装配式组合梁群钉剪力键剪切刚度试验研究. 建筑钢结构进展. 2022(08): 28-34+60 . 百度学术
    18. 马天宇,刘永健,孙泽坤,王琨,李慧. 集簇式栓钉抗剪承载力折减系数计算方法. 建筑科学与工程学报. 2022(05): 160-171 . 百度学术
    19. 邓文琴,胡楷文,刘朵,赵兴宝,查上,张建东. 集簇式焊钉连接件抗剪承载力试验及计算方法. 中国公路学报. 2022(10): 194-204 . 百度学术
    20. 周阳,蒲黔辉,施洲,杨华平. 复合剪力连接件群钢-混结合段力学性能. 科学技术与工程. 2022(29): 13058-13065 . 百度学术
    21. 徐晨,肖涵,杨澄宇. 超高性能混凝土组合桥面板短群钉抗剪性能分析. 中南大学学报(自然科学版). 2022(11): 4359-4371 . 百度学术
    22. 曾思智,王雪飞,黄海,胡淑军. 十字带侧板型抗剪连接件力学性能试验及有限元研究. 自然灾害学报. 2022(06): 125-133 . 百度学术
    23. 王雪飞,曾思智,黄海,胡淑军. 腹板开洞型抗剪连接件的抗震性能试验研究. 广西大学学报(自然科学版). 2022(06): 1471-1480 . 百度学术
    24. 邱凯,刘洋,王有志,田长进,杜业峰. 钢-橡胶集料混凝土组合结构中群钉效应分析. 土木工程与管理学报. 2021(06): 188-196 . 百度学术
    25. 卫星,肖林,温宗意,康志锐. 钢混组合结构桥梁2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 107-119 . 百度学术

    其他类型引用(30)

图(17)  /  表(7)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  258
  • PDF下载量:  71
  • 被引次数: 55
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2020-01-08
  • 网络出版日期:  2020-05-06
  • 刊出日期:  2020-06-30

目录

    WANG Da, 874113091@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回