设置自复位支撑的钢筋混凝土框架结构抗震性能研究

徐龙河, 张格, 颜欣桐

徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0100
引用本文: 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0100
XU Long-he, ZHANG Ge, YAN Xin-tong. SEISMIC PERFORMANCE STUDY OF REINFORCED CONCRETE FRAME WITH SELF-CENTERING BRACES[J]. Engineering Mechanics, 2020, 37(2): 90-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0100
Citation: XU Long-he, ZHANG Ge, YAN Xin-tong. SEISMIC PERFORMANCE STUDY OF REINFORCED CONCRETE FRAME WITH SELF-CENTERING BRACES[J]. Engineering Mechanics, 2020, 37(2): 90-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0100

设置自复位支撑的钢筋混凝土框架结构抗震性能研究

基金项目: 国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)
详细信息
    作者简介:

    张格(1995-),女,陕西人,博士生,主要从事结构抗震研究(E-mail:17115337@bjtu.edu.cn);颜欣桐(1993-),男,重庆人,硕士生,主要从事结构抗震研究(E-mail:15121117@bjtu.edu.cn).

    通讯作者:

    徐龙河(1976-),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn).

  • 中图分类号: TU352.11

SEISMIC PERFORMANCE STUDY OF REINFORCED CONCRETE FRAME WITH SELF-CENTERING BRACES

  • 摘要: 提出了一种能准确描述预压弹簧自复位耗能(PS-SCED)支撑滞回性能的力学模型,引入状态变量区分支撑不同工作阶段从而确定其力学响应。基于ABAQUS平台对该力学模型进行二次开发,将开发的PS-SCED支撑单元模拟结果与支撑力学性能试验结果进行对比,并对设置PS-SCED支撑的3层钢筋混凝土框架结构进行抗震性能分析。结果表明:该支撑单元模拟得到的滞回曲线与试验结果吻合较好,可准确描述支撑在动力荷载作用下的力学性能;强震作用下,PS-SCED支撑能够充分耗散地震能量,有效控制结构的塑性变形;此外,PS-SCED支撑框架结构相比于原框架结构残余变形减小了72.1%~92.1%。PS-SCED支撑具备良好的耗能能力和自复位特性,能够显著提高钢筋混凝土框架结构的抗震性能。
    Abstract: A mechanical model is proposed accurately describe the hysteretic behavior of pre-pressed spring self-centering energy dissipation (PS-SCED) brace. The state variables are introduced to distinguish different stages of PS-SCED brace and then its mechanical responses are determined. The secondary development of the mechanical model is carried out based on ABAQUS. The simulation results of the developed PS-SCED brace element are compared with the test results of the brace, and the seismic performances of a 3-story reinforced concrete frame structure with PS-SCED braces are analyzed. The results indicate that the hysteretic curves obtained from the brace element simulation agree well with the test results, and the brace element is accurate enough to describe the mechanical performance of the brace under dynamic loads. The seismic energy dissipates sufficiently and the plastic deformation of the structure is controlled effectively by PS-SCED braces subjected to strong earthquake. Additionally, the residual deformations of frame structure with PS-SCED braces are reduced by 72.1%~92.1% compared with the original frame structure. The PS-SCED brace exhibits full hysteretic performances with good energy dissipation capacity and self-centering behavior, which significantly improves the seismic performances of reinforced concrete frame structures.
  • [1] Asgarian B, Amirhesari N. A comparison of dynamic nonlinear behavior of ordinary and buckling restrained braced frames subjected to strong ground motion[J]. The Structural Design of Tall and Special Buildings, 2008, 17(2):367-386.
    [2] 周云,钱洪涛,褚洪民,等. 新型防屈曲耗能支撑设计原理与性能研究[J]. 土木工程学报, 2009, 42(4):64-71. Zhou Yun, Qian Hongtao, Chu Hongmin, et al. A study on the design principle and performance of a new type of buckling-restrained brace[J]. China Civil Engineering Journal, 2009, 42(4):64-71. (in Chinese)
    [3] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6):19-28. Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6):19-28. (in Chinese)
    [4] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9):1-14. Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces:Types, design methods and application[J]. Engineering Mechanics, 2016, 33(9):1-14. (in Chinese)
    [5] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:Development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
    [6] Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-centering energy dissipative steel braces[J]. Journal of Structural Engineering, ASCE, 2008, 134(1):108-120.
    [7] Zhu S Y, Zhang Y F. Performance based seismic design of steel braced frame system with self-centering friction damping brace[C]//Proceedings of the 18th Analysis and Computation Specialty Conference. Vancouver, British Columbia, Canada, American Society of Civil Engineers, 2008:1-13
    [8] 宋子文. 自复位耗能支撑结构的地震响应分析[D]. 哈尔滨:哈尔滨工业大学, 2010. Song Ziwen. Seismic response analysis of structures with self-centering energy dissipation braces[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
    [9] 徐龙河, 王坤鹏, 谢行思, 等. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7):39-46. Xu Longhe, Wang Kunpeng, Xie Xingsi, et al. Study on hysteretic model and seismic performance of damping energy dissipation brace with self-centering capability[J]. Engineering Mechanics, 2018, 35(7):39-46. (in Chinese)
    [10] 徐龙河, 谢行思, 李忠献. 自复位变阻尼耗能支撑的力学原理与性能研究[J]. 工程力学, 2018, 35(1):201-208. Xu Longhe, Xie Xingsi, Li Zhongxian. Mechanics and performance study of self-centering variable damping energy dissipation brace[J]. Engineering Mechanics, 2018, 35(1):201-208. (in Chinese)
    [11] 樊晓伟, 徐龙河, 李忠献. 预压弹簧自恢复耗能支撑非线性原理模型参数识别及试验验证[J]. 土木工程学报, 2018, 51(7):29-35. Fan Xiaowei, Xu Longhe, Li Zhongxian. Parameter identification and experimental verification of nonlinear principle model for pre-pressed spring self-centering energy dissipation braces[J]. China Civil Engineering Journal, 2018, 51(7):29-35. (in Chinese)
    [12] Xu L H, Fan X W, Lu D C, et al. Hysteretic behavior studies of self-centering energy dissipation bracing system[J]. Steel and Composite Structures, 2016, 20(6):1205-1219.
    [13] Xu L H, Fan X W, Lu D C, et al. Development and experimental verification of a pre-pressed spring selfcentering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
    [14] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
    [15] 周颖, 顾安琪. 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(3):118-126. Zhou Ying, Gu Anqi. Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2019, 40(3):118-126. (in Chinese)
  • 期刊类型引用(14)

    1. 贾磊,韦俊,卢俊龙,张瑞豪,吴义. 含斜柱RC框架结构抗震能力计算分析. 江苏建筑. 2024(03): 32-38 . 百度学术
    2. 马艳,马肖彤,杨军,陆华,拓明阳,张瑞豪. 地铁上盖斜柱转换大跨度RC框架结构抗震能力分析. 建筑科学. 2024(05): 186-194 . 百度学术
    3. 徐龙河,鞠子薇,江浩. 自复位支撑钢框架抗震性能评估与损伤演化分析. 工程力学. 2024(07): 68-77 . 本站查看
    4. 徐龙河,黄楚城,谢行思. 自复位支撑钢框架摩擦装配式节点性能研究. 振动工程学报. 2024(07): 1239-1249 . 百度学术
    5. 徐龙河,敬祺轲,谢行思. 主余震下自复位支撑RC框架结构性能研究. 工程力学. 2023(05): 117-124 . 本站查看
    6. 贺旭. 框架结构局部房间隔震技术研究与应用. 施工技术(中英文). 2023(09): 38-43+107 . 百度学术
    7. 刘汉赋,陆晨,胡晓斌. 框架—自复位墙结构弹性地震反应分析的简化方法. 工程力学. 2022(01): 100-107+117 . 本站查看
    8. 王德斌,白海峰,付兴,倪龙飞. 一种新型扭转金属阻尼器及其减震性能分析. 东南大学学报(自然科学版). 2022(01): 74-82 . 百度学术
    9. 胡进军,刘巴黎,谢礼立. 类旗帜型滞回模型体系的近断层等损伤位移谱. 工程力学. 2022(06): 169-180+190 . 本站查看
    10. 徐龙河,刘媛媛,谢行思. 地震-风耦合作用下钢框架-自复位支撑筒结构性能研究. 工程力学. 2022(11): 186-195 . 本站查看
    11. 胡淑军,顾琦,姜国青,熊进刚. 一种新型自复位SMA支撑的抗震性能试验研究. 工程力学. 2021(01): 109-118+142 . 本站查看
    12. 马腾飞,张雯雯. 基于多弹簧模型的自复位耗能桥墩抗震性能研究. 四川水泥. 2021(05): 331-332 . 百度学术
    13. 丁蕊,吴越,汪宇翔. 自复位抗震装置的研究与展望. 中国高新科技. 2021(08): 116-117 . 百度学术
    14. 陈笑宇,王东升,付建宇,国巍. 近断层地震动脉冲特性研究综述. 工程力学. 2021(08): 1-14+54 . 本站查看

    其他类型引用(21)

计量
  • 文章访问数:  614
  • HTML全文浏览量:  116
  • PDF下载量:  127
  • 被引次数: 35
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-07-01
  • 刊出日期:  2020-05-26

目录

    YAN Xin-tong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回