EXPERIMENTAL STUDY ON THE COMPRESSIVE STRENGTH OF CONCRETE OF DIFFERENT STRENGTH GRADES EXPERIENCING ULTRALOW TEMPERATURE FREEZE-THAW CYCLE ACTION
-
摘要: 通过设计强度等级C40、C50及C60混凝土经历0次、16次和30次温度区间分别为15℃~-120℃和15℃~-190℃的冻融循环作用试验,探讨不同强度等级混凝土超低温冻融循环作用下受压强度变化规律。试验结果表明,不同强度等级混凝土试件上下限温度时加载的破坏形态基本上类似、均大致呈对顶锥状,但其破坏面状况等破坏特征有所不同。经历各种超低温冻融循环作用工况混凝土上、下限温度时的相对受压强度随其含水率增加基本上均呈下降趋势。而随强度等级提高,上限温度时混凝土相对受压强度呈增大态势,但各强度等级混凝土均随冻融循环作用次数的增加呈下降趋势;下限温度时不同超低温温度区间的混凝土相对受压强度虽也基本上有所增大,但增大的原因存在明显的差异。给定的超低温冻融作用温度区间工况下各强度等级混凝土下限温度时相对受压强度随冻融循环作用次数增加的变化趋势相似,但不同温度区间时却不同。超低温冻融作用对混凝土性能影响与常规冻融作用不同,其受压强度恶化更为严重。实际工程中不能直接地将常规冻融循环作用研究结果应用于设计具有超低温冻融作用的混凝土结构。Abstract: Through experiments of concrete of different strength grades such as C40, C50 and C60 that experiences 0, 16 and 30 cycles of ultralow temperature freeze-thaw cycle action from 15℃ to -120℃ and -190℃, the effects of the strength grades on the concrete compressive strength are discussed. The test results show that the failure modes of the specimens with different concrete strength grades are similar and generally cone-shaped regardless of the loading at the lower or upper limit temperature, but the failure surface characteristics and so on are different. After experiencing ultralow temperature freeze-thaw cycle action, the relative concrete compressive strengths at the lower and upper limit temperatures decrease with the increase in the concrete water content. With an increase in the concrete strength grade, the relative concrete compressive strengths increase at the upper limit temperature, while the relative concrete compressive strength of every strength grade decreases with the increase in the number of freeze-thaw cycles. Although the relative concrete compressive strength in different ultralow temperature ranges increases at the lower limit temperature, there is obvious difference in the reasons for its increase. The variation trend of the relative concrete compressive strength with the increase in the number of freeze-thaw cycles is similar in a given ultralow temperature range regardless of the concrete strength grade, but there exists a difference between different ultralow temperature ranges. The influence of ultralow temperature freeze-thaw action on the concrete mechanical performance is different from that of natural ambient temperature freeze-thaw action, from which the degradation of the concrete compressive strength is much more serious. In practical engineering, the results from natural ambient temperature freeze-thaw action should not be directly applied to the design of concrete structures that undergo ultralow temperature freeze-thaw action.
-
Keywords:
- concrete /
- ultralow temperature /
- freeze-thaw cycle action /
- strength grade /
- compressive strength
-
-
[1] 苗奕. 液化天然气全球需求增长或造成供应短缺[N]. 中国煤炭报, 2018-03-06(7). Miao Yi. Global demand for liquefied natural gas may cause supply shortage[N]. China Coal News, 2018-03-06(7). (in Chinese) [2] 蒋正武, 张楠, 李雄英, 等. 国外超低温下混凝土性能的研究进展评述[J]. 材料导报, 2011, 25(13):1-4. Jiang zhengwu, Zhang Nan, Li Xiongying, et al. Review on research progress of concrete performance at ultralow temperature abroad[J]. Materials Review, 2011, 25(13):1-4. (in Chinese) [3] Kogbara R B, Iyengar S R, Grasley Z C, et al. A review of concrete properties at cryogenic temperatures:Towards direct LNG containment[J]. Construction & Building Materials, 2013, 47(10):760-770. [4] 戢文占, 张涛, 王宝华, 等. 混凝土在超低温环境下的力学特性研究[J]. 混凝土, 2014(6):45-47. Ji Wenzhan, zhang Tao, Wang Baohua, et al. Experimental study on mechanical properties of concrete in ultralow temperature environment[J]. Concrete, 2014(6):45-47. (in Chinese) [5] Montejo L A, Asce S M, Sloan J E, et al. Cyclic response of reinforced concrete members at low temperatures[J]. Journal of Cold Regions Engineering, 2008, 22(3):79-102. [6] 时旭东, 马驰, 张天申, 等. 不同强度等级混凝土-190℃时受压强度性能试验研究[J]. 工程力学, 2017, 34(3):61-67. Shi Xudong, Ma Chi, Zhang Tianshen, et al. Experimental study on compressive behavior of different strength grade concrete exposed to -190℃[J]. Engineering Mechanics, 2017, 34(3):61-67. (in Chinese) [7] 时旭东, 汪文强, 钱磊, 李俊林. 不同含水率混凝土遭受常温至-190℃间冻融循环作用的抗压强度试验研究[J]. 低温工程, 2017(2):17-22. Shi Xudong, Wang Wenqiang Qian Lei, Li Junlin. Experimental study on compressive strength of concrete with different water content experiencing cryogenic freeze-thaw cycles from room temperature to -190℃[J]. Cryogenics, 2017(2):17-22. (in Chinese) [8] 时旭东, 李俊林, 汪文强, 等. 混凝土经历常温及-30~-120℃间冻融循环作用的受压变形性能试验研究[J]. 混凝土, 2017(12):1-5. Shi Xudong, Li Junlin, Wang Wenqiang, et al. Experimental study on compressive strain behavior of concrete undergoing cryogenic freeze-thaw cycles from room temperature or -30℃ to -120℃[J]. Concrete, 2017(12):1-5. (in Chinese) [9] 时旭东, 钱磊, 马驰, 等. 经历常温降温至-190℃再回温混凝土温度场试验研究[J]. 工程力学, 2018, 35(5):162-169. Shi Xudong, Qian Lei, Ma Chi, et al. Experimental study on temperature field of concrete during cooling from room to -196℃ and then returning to room temperature[J]. Engineering Mechanics, 2018, 35(5):162-169. (in Chinese) [10] 覃丽坤, 宋玉普, 陈浩然, 等. 冻融循环对混凝土力学性能的影响[J]. 岩石力学与工程学报, 2005(a01):5048-5053. Qin Likun, Song Yupu, Chen Haoran, et al. Effects of freeze-thaw cycle on mechanical properties of concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(a01):5048-5053. (in Chinese) [11] 张士萍, 邓敏, 唐明述. 混凝土冻融循环破坏研究进展[J]. 材料科学与工程学报, 2008(6):990-994. Zhang Shiping, Deng Min, Tang Mingshu. Advance in research on damage of concrete due to freeze-thaw cycles[J]. Journal of Materials Science & Engineering, 2008(6):990-994. (in Chinese) [12] 徐斌, 许晔. 混凝土冻融性能试验研究[J]. 广东建材, 2005(7):30-31. Xu Bin, Xu Ye. Experimental study on freeze-thaw performance of concrete[J]. Guangdong Building Materials, 2005(7):30-31. (in Chinese) [13] 杨兵, 王伯求. 冻融循环作用下不同混凝土的力学性能对比分析[J]. 中国科技信息, 2009(8):73-74. Yang Bing, Wang Boqiu. Comparative analysis of mechanical properties of different concrete under freeze-thaw cycle[J]. China Science and Technology Information, 2009(8):73-74. (in Chinese) [14] 曹大富, 富立志. 冻融环境下普通混凝土力学性能的试验研究[J]. 混凝土, 2010(10):34-36. Cao Dafu, Fu Lizhi. Experimental study on strength of concrete exposed to freeze-thaw environment[J]. Concrete, 2010(10):34-36. (in Chinese) [15] 谢剑, 吴洪海. 超低温冻融循环作用下的混凝土强度[J]. 土木建筑与环境工程, 2012, 34(增刊2):165-168. Xie Jian, Wu Honghai. Experimental research on concrete strength under freeze-thaw cycle action with ultralow temperature[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(Suppl 2):165-168. (in Chinese) -
期刊类型引用(27)
1. 谢剑,司家伟,亢二聪,孙雅丹. LNG储罐混凝土超低温冻融损伤演化规律. 建筑材料学报. 2025(01): 58-64 . 百度学术
2. 时旭东,韩源海,田佳伦. 不同初始预压应力水平混凝土给定超低温作用下有效预压性能试验研究. 工程力学. 2025(03): 157-166 . 本站查看
3. 李志勇. 低温条件下水工混凝土抗压强度影响分析. 黑龙江水利科技. 2024(02): 24-26+39 . 百度学术
4. 韩伟涛. 预应力与冻融循环耦合作用下水工混凝土性能研究. 黑龙江水利科技. 2024(03): 37-40 . 百度学术
5. 李恩. 冻融环境下大坝混凝土面层强度退化过程研究. 水利科技与经济. 2024(04): 152-155+167 . 百度学术
6. 曾在平,张有伟. 冻融循环作用后钢管混凝土柱参数分析. 福建建筑. 2024(08): 28-32 . 百度学术
7. 于永波. 氯盐与冻融耦合状态下水工混凝土抗冻性研究. 水利科学与寒区工程. 2024(10): 43-45 . 百度学术
8. 宁建国,李玉辉,杨帅,许香照. 冲击载荷作用下含损伤的低温混凝土本构模型研究. 兵工学报. 2024(12): 4339-4349 . 百度学术
9. 时旭东,韩大全,崔一丹. 不同低温工况下混凝土的受压强度研究. 混凝土与水泥制品. 2023(01): 1-4+10 . 百度学术
10. 周洋,武英杰. 低温环境混凝土质量控制研究综述. 海河水利. 2023(01): 111-113 . 百度学术
11. 邓祥辉,梁凯轩,王睿,刘怡媛,杨怡文. 高海拔寒冷地区混凝土抗冻耐久性试验研究. 工程力学. 2023(09): 37-47 . 本站查看
12. 周大卫,刘娟红,CHENG Linian,WU Ruidong,ZOU Min,WANG Jiahao. Research and Prediction on the Properties of Concrete at Cryogenic Temperature Based on Gray Theory. Journal of Wuhan University of Technology(Materials Science). 2023(05): 1056-1064 . 百度学术
13. 宁建国,杨帅,李玉辉,许香照. 低温/常温养护下混凝土的本构模型和抗爆试验. 兵工学报. 2023(10): 2932-2943 . 百度学术
14. 张燕燕. 冻融作用下超高性能混凝土细观结构损伤研究. 混凝土. 2023(10): 221-224 . 百度学术
15. 陈瑞明,胡云霞. 混凝土冻融损伤机理试验研究. 江西建材. 2022(03): 7-8+11 . 百度学术
16. 杨琦,李克非. 引气混凝土在自然条件下的吸水模型研究. 工程力学. 2022(05): 159-166+176 . 本站查看
17. 孙强,纪映旭. 一种超高性能有机纤维增强水泥基复合材料力学性能和耐久性研究. 建筑结构. 2022(S1): 1557-1561 . 百度学术
18. 董晋琦,郑山锁,郑淏,尚志刚,段培亮,李亚林. 考虑冻融循环作用的RC框架梁柱节点抗震性能试验及恢复力模型. 中南大学学报(自然科学版). 2022(06): 2311-2324 . 百度学术
19. 段品佳,毕晓星,李宇航,刘娟红,周大卫,程立年,娄百川. 混凝土超低温力学特性及本构关系研究. 材料导报. 2022(18): 73-77 . 百度学术
20. 周一飞,姜挺,杨元全,张冰. 粉煤灰对20~-70℃低温冻融环境下混凝土力学性能的影响. 沈阳理工大学学报. 2022(06): 51-57 . 百度学术
21. 姚周飞,杜习周,王叶娇,张政. 液氮泄漏对超导电缆管线槽混凝土物理力学性质的影响. 科学技术与工程. 2022(27): 12117-12123 . 百度学术
22. 张志沛,朱文清,李可飞,李登科. 不同初始缺陷再生混凝土渗透性能及其强度试验研究. 混凝土. 2022(11): 23-26+31 . 百度学术
23. 金浏,张仁波,杜修力,刘晶波. 温度对混凝土结构力学性能影响的研究进展. 土木工程学报. 2021(03): 1-18 . 百度学术
24. 韩风霞,刘继颜,韩霞,刘鹏举,贺成林. 冻融循环后PE-ECC梁受弯性能试验研究. 混凝土与水泥制品. 2021(06): 60-64 . 百度学术
25. 于恩毅,金爱兵,孙浩,李天龙,范知其. 超低温冻融循环下灰岩抗压强度与孔隙率的演化特征及衰减模型. 矿业研究与开发. 2021(10): 55-60 . 百度学术
26. 唐建行,李扬. 低温下砂浆的力学性能分析. 混凝土世界. 2020(09): 80-83 . 百度学术
27. 华亮,蒋磊,白志忠. 高寒地区隧道二衬混凝土抗冻融施工的实验研究. 粘接. 2020(12): 94-97 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 592
- HTML全文浏览量: 64
- PDF下载量: 97
- 被引次数: 40