氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态

余朔, 金浩, 周顺华, 毕湘利

余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态[J]. 工程力学, 2019, 36(7): 174-183. DOI: 10.6052/j.issn.1000-4750.2018.06.0354
引用本文: 余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态[J]. 工程力学, 2019, 36(7): 174-183. DOI: 10.6052/j.issn.1000-4750.2018.06.0354
YU Shuo, JIN Hao, ZHOU Shun-hua, BI Xiang-li. Steel rust layer form of sustained load segments under combined action of chloride ion and stray current[J]. Engineering Mechanics, 2019, 36(7): 174-183. DOI: 10.6052/j.issn.1000-4750.2018.06.0354
Citation: YU Shuo, JIN Hao, ZHOU Shun-hua, BI Xiang-li. Steel rust layer form of sustained load segments under combined action of chloride ion and stray current[J]. Engineering Mechanics, 2019, 36(7): 174-183. DOI: 10.6052/j.issn.1000-4750.2018.06.0354

氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态

基金项目: 国家重点研发计划项目(2017YFB1201204);国家自然科学基金项目(51478353,41472247)
详细信息
    作者简介:

    余朔(1991-),男,四川人,博士生,主要从事盾构隧道结构耐久性研究(E-mail:1610735@tongji.edu.cn);周顺华(1964-),男,浙江人,教授,博士,博导,主要从事盾构隧道结构承载性能研究(E-mail:zhoushh@tongji.edu.cn);毕湘利(1970-),男,吉林人,高工,博士,博导,主要从事盾构隧道结构承载性能研究(E-mail:bixiangli2@163.com).

    通讯作者:

    金浩(1986-),男,浙江人,助理教授,博士,主要从事地下铁道混凝土结构耐久性研究(E-mail:jinhao@tongji.edu.cn).

  • 中图分类号: U455.43

Steel rust layer form of sustained load segments under combined action of chloride ion and stray current

  • 摘要: 针对盾构隧道结构在服役期间可能出现钢筋锈蚀的问题,考虑杂散电流、氯离子及外部荷载共同作用,建立了电-化-力三场耦合的三维管片数值模型,分析了多因素作用下拱腰部位管片钢筋的锈蚀率变化规律及锈层分布形态。研究表明: 1)靠近管片外侧钢筋的锈蚀率比内侧的大,不同区域的钢筋出现最大锈蚀率的位置与连心线的夹角在0°~52°之间。2)在荷载作用下管片钢筋的锈蚀率与体积应变有关,管片中部的锈蚀率大于两端的锈蚀率。3)在钢筋脱钝情况下,管片钢筋的锈蚀率随阴阳极电势差增大呈线性增加,随氯离子含量增大呈对数增加。4)在三种因素共同作用下管片钢筋的锈层分布呈偏心圆形态,且偏心圆圆心坐标及半径的大小与钢筋不均匀锈蚀系数及最大腐蚀电流密度有关。
    Abstract: Under the influence of stray current as well as chloride ion and external load, the shield tunnel steel easily appear corrosion during its service period. Therefore, a three-dimensional numerical model is established in an electrical as well as chemical and mechanical coupling field. The change rule of segment steel corrosion rate at arch and the steel rust layer distribution form are analyzed. The results show that:1) the steel corrosion rate near the segment outside is larger than that near the inside, the intersection angle between the direction of maximum steel corrosion rate and the circle center line is 0°~52°; 2) the segment steel corrosion rate is related to volumetric strain under loading, and the segment steel corrosion rate in the middle is larger than that in the two ends; 3) when the steel occur depassivation, the steel corrosion rate increases linearly with the potential difference of cathode to anode, and it increases logarithmically with the chloride ion content; 4) under the joint action of three factors, the segment steel rust layer form appear eccentric circle, and the radius size and circular center are related to the non-uniform corrosion coefficient as well as the maximum corrosion current density.
  • [1] Ožbolt J, Oršanić F, Balabanić G, et al. Modeling damage in concrete caused by corrosion of reinforcement:coupled 3D FE model[J]. International Journal of Fracture, 2012, 178(1):233-244.
    [2] 马亚飞, 王磊, 张建仁. 锈胀钢筋混凝土拱肋承载力试验与模拟[J]. 工程力学, 2017, 34(3):155-161. Ma Yafei, Wang Lei, Zhang Jianren. Experimental and numerical studies on reinforced concrete arch ribs with corrosion-induced cracks[J]. Engineering Mechanics, 2017, 34(3):155-161. (in Chinese)
    [3] 何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1):97-109. He Chuan, Feng Kun, Fang Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1):97-109. (in Chinese)
    [4] Bertolini L, Carsana M, Pedeferri P. Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corrosion Science, 2007, 49(3):1056-1068.
    [5] Lei M, Peng L, Shi C. An experimental study on durability of shield segments under load and chloride environment coupling effect[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2014, 42(5):15-24.
    [6] Li Q, Yu H, Ma H, et al. Test on durability of shield tunnel concrete segment under coupling multi-factors[J]. Open Civil Engineering Journal, 2014, 8(1):451-457.
    [7] 刘四进, 何川, 孙齐, 等. 腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J]. 中国公路学报, 2017, 30(8):125-133. Liu Sijin, He Chuan, Shun Qi, et al. Erosion degradation mechanism of shield tunnel lining structure in corrosive ion environment[J]. China Journal of Highway and Transport, 2017, 30(8):125-133. (in Chinese)
    [8] Hong Y, Li Z, Qiao G, et al. Numerical simulation and experimental investigation of the stray current corrosion of viaducts in the high-speed rail transit system[J]. International Review of Economics & Finance, 2017, 33(3):319-337.
    [9] Ožbolt J, Balabanić G, Kušter M. 3D numerical modelling of steel corrosion in concrete structures[J]. Corrosion Science, 2011, 53(12):4166-4177.
    [10] Cao C. 3D simulation of localized steel corrosion in chloride contaminated reinforced concrete[J]. Construction & Building Materials, 2014, 72(12):434-443.
    [11] Zhu X, Zi G. A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage[J]. Construction & Building Materials, 2017, 137:330-344.
    [12] O. Burkan Isgor, A. Ghani Razaqpur. Modelling steel corrosion in concrete structures[J]. Materials and Structures, 2006, 39(3):291-302.
    [13] Greenwood D J, Goodman D. Direct measurements of the distribution of distribution of oxygen in soil aggregates and in columns of fine soil crumbs[J]. European Journal of Soil Science, 2010, 18(1):182-196.
    [14] Hussain R R. Enhanced classical Tafel diagram model for corrosion of steel in chloride contaminated concrete and the experimental non-linear effect of temperature[J]. International Journal of Concrete Structures & Materials, 2010, 4(2):71-75.
    [15] Cao C, Cheung M M S. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures[J]. Construction & Building Materials, 2014, 51(1):75-81.
    [16] Muehlenkamp E B, M. D. Koretsky, Westall J C. Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete[J]. Corrosion the Journal of Science & Engineering, 2005, 61(6):519-533.
    [17] 金浏, 张仁波, 杜修力. 低应力水平下混凝土中氯离子扩散行为多尺度分析方法[J]. 工程力学, 2017, 34(3):84-92. Jin Liu, Zhang Renbo, Du Xiuli. Multiscale analysis for the chloridoid diffusivity in concrete subjected to low-level stress[J]. Engineering Mechanics, 2017, 34(3):84-92. (in Chinese)
    [18] Du X L, Jin L, Zhang R B. Chloride diffusivity in saturated cement paste subjected to external mechanical loadings[J]. Ocean Engineering, 2015, 95(2):1-10.
    [19] Papadakis V G. Fundamental modeling and experimental investigation of concrete carbonation[J]. Aci Material Journal, 1991, 88(4):363-373.
    [20] Hansen T C. Physical structure of hardened cement paste. A classical approach[J]. Materials & Structures, 1986, 19(6):423-436.
    [21] Suda K, Misra S, Motohashi K. Corrosion products of reinforcing bars embedded in concrete[J]. Corrosion Science, 1993, 35(5/6/7/8):1543-1549.
    [22] Bhargava K, Ghosh A K, Mori Y, et al. Model for cover cracking due to rebar corrosion in RC structures[J]. Engineering Structures, 2006, 28(8):1093-1109.
    [23] Zhao Y, Hu B, Yu J, et al. Non-uniform distribution of rust layer around steel bar in concrete[J]. Corrosion Science, 2011, 53(12):4300-4308.
    [24] Thybo A E A, Michel A, Stang H. Smeared crack modelling approach for corrosion-induced concrete damage[J]. Materials & Structures, 2018, 50(2):1-14.
  • 期刊类型引用(7)

    1. 孙博旭,金浩,余朔. 管片锈裂对盾构隧道结构承载性能的影响. 地下空间与工程学报. 2024(S1): 148-154+162 . 百度学术
    2. 佘才高,张存,王怀东,田志尧. 软土错缝拼装盾构隧道横断面变形控制限值研究. 都市快轨交通. 2021(05): 119-127 . 百度学术
    3. 刘瑞康,岳健,朱铁环,安永林. 服役期迷流影响下不同净距地铁双洞的电位分布特性. 湖南理工学院学报(自然科学版). 2021(04): 37-42 . 百度学术
    4. 余朔,金浩,毕湘利. 荷载裂缝几何形态对管片外排钢筋锈层分布的影响. 工程力学. 2020(04): 118-128 . 本站查看
    5. 张伯林,郑军,张书丰. 荷载变化条件下不同深度榫槽对隧道结构承载性能的影响. 铁道标准设计. 2020(10): 101-108 . 百度学术
    6. 张伯林,郑军. 侧压力系数对盾构隧道接头变形及受力影响. 隧道建设(中英文). 2020(S1): 39-50 . 百度学术
    7. 田清荣,金浩. 细观尺度下橡胶混凝土钢筋非均匀锈胀反力研究. 华东交通大学学报. 2020(05): 31-37 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  433
  • HTML全文浏览量:  32
  • PDF下载量:  54
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-06-29
  • 修回日期:  2018-10-12
  • 刊出日期:  2019-07-24

目录

    /

    返回文章
    返回