隧道锚固系统的协同作用及设计方法

孙振宇, 张顶立, 房倩

孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66,75. DOI: 10.6052/j.issn.1000-4750.2018.03.0160
引用本文: 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66,75. DOI: 10.6052/j.issn.1000-4750.2018.03.0160
SUN Zhen-yu, ZHANG Ding-li, FANG Qian. THE SYNERGISTIC EFFECT AND DESIGN METHOD OF TUNNEL ANCHORAGE SYSTEM[J]. Engineering Mechanics, 2019, 36(5): 53-66,75. DOI: 10.6052/j.issn.1000-4750.2018.03.0160
Citation: SUN Zhen-yu, ZHANG Ding-li, FANG Qian. THE SYNERGISTIC EFFECT AND DESIGN METHOD OF TUNNEL ANCHORAGE SYSTEM[J]. Engineering Mechanics, 2019, 36(5): 53-66,75. DOI: 10.6052/j.issn.1000-4750.2018.03.0160

隧道锚固系统的协同作用及设计方法

基金项目: 中央高校基本科研业务费专项资金项目(2018YJS125);国家重点研发计划项目(2017YFC0805401);国家自然科学基金项目(51738002)
详细信息
    作者简介:

    孙振宇(1993-),男,湖北天门人,博士生,主要从事隧道及地下工程方面的研究(E-mail:15115278@bjtu.edu.cn);房倩(1983-),男,山东淄博人,副教授,博士,博导,主要从事隧道结构设计方面的研究(E-mail:qfang@bjtu.edu.cn).

    通讯作者:

    张顶立(1963-),男,江苏徐州人,教授,博士,博导,从事隧道及地下工程研究(E-mail:zhang-dingli@263.net).

  • 中图分类号: U45;U455.71

THE SYNERGISTIC EFFECT AND DESIGN METHOD OF TUNNEL ANCHORAGE SYSTEM

  • 摘要: 基于隧道围岩的复合结构特性,阐明了隧道锚固系统协同作用原理,建立了锚固体系协同作用力学模型,得到了锚固体系与围岩相互作用的全过程解答。隧道围岩由内部稳定性较差的浅层围岩和外侧承载能力较强的深层围岩复合而成,锚杆通过"组合梁"或"压缩拱"效应形成"围岩整体结构",锚索则将此结构悬吊至外侧稳定的深层围岩,其协同作用核心为调动深层围岩承载;基于锚杆参数敏感性分析,指出增大锚杆长度、预应力以及布置密度可显著减小围岩变形,而锚杆直径对围岩变形影响较小,计算表明锚杆长度以穿过浅层围岩伸入深层围岩第1组结构层为宜,合理的锚杆参数取值具有明显的匹配效应;锚固体系协同作用本质为变形协调和荷载的合理分配,锚杆、锚索支护参数相互匹配时能充分发挥组合构件效能,提高围岩稳定性;将围岩变形量和支护协同度作为评价指标,建立了锚固体系协同效果评价体系,并提出了基于锚固系统协同作用的隧道锚固参数确定方法,通过具体算例验证了该文的合理性和可靠性。该文研究成果对隧道锚固系统的协同作用给出了全面认识,可为隧道和地下工程中锚固体系的定量设计提供理论依据。
    Abstract: Based on the compound structural characteristics of tunnel surrounding rock, the principle of anchoring system synergistic effect is illuminated, and a corresponding mechanical model is established. The whole process of the interaction between an anchoring system and surrounding rock is solved. Tunnel surrounding rock is a composite of the internal instable surrounding rock and the external surrounding rock with strong load-bearing capacity. Rockbolt forms ‘a surrounding rock massive structure’ through a ‘composite beam’ or ‘compression arch’ effect. This structure is suspended to external stable surrounding rock by an anchor, and the core of synergy is to mobilize external surrounding rock bearing. The sensitivity analysis of bolt parameter indicates that increasing the length, prestress and density of a rockbolt can significantly reduce the deformation of surrounding rock, while its diameter has little effect on surrounding rock deformation. Calculations show that:appropriate length lies in passing through the internal surrounding rock and stretching into the first structure layer of external surrounding rock, and the reasonable values of bolt parameters have an obvious matching effect. The synergistic effect essence of an anchoring system is its deformation coordination and load rational distribution. The parameters of rockbolt and cable matching each other can give a full play to the assembly efficiency and improve the stability of surrounding rock. Taking the surrounding rock deformation and support synergy degree as evaluation indices, the synergistic effect evaluation system of a tunnel anchorage system is put forward, then the determination method of tunnel anchorage parameters is proposed based on anchoring system synergy. The research results give a comprehensive understanding of synergistic effect of a tunnel anchorage system, which can provide a theoretical basis for the quantitative design of the anchoring system in tunnel and underground engineering.
  • [1] 康红普, 王金华, 林健. 煤矿巷道支护技术的研究与应用[J]. 煤炭学报, 2010, 35(11):1809-1814. Kang Hongpu, Wang Jinhua, Lin Jian. Study and application of roadway support techniques for coal mines[J]. Journal of China Coal Society, 2010, 35(11):1809-1814. (in Chinese)
    [2] Stille H, Holmberg M, Nord G. Support of weak rock with grouted bolts and shotcrete[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1989, 26(1):99-113.
    [3] Fahimifar A, Soroush H. A theoretical approach for analysis of the interaction between grouted rockbolts and rock masses[J]. Tunnelling and Underground Space Technology, 2005, 20(4):333-343.
    [4] 李大伟, 侯朝炯. 围岩应变软化巷道锚杆支护作用的计算[J]. 采矿与安全工程学报, 2008, 25(1):123-126. Li Dawei, Hou Chaojiong. Calculation of bolt support in surrounding rock strain softening roadway[J]. Journal of Mining & Safety Engineering, 2008, 25(1):123-126. (in Chinese)
    [5] 余伟健, 高谦, 朱川曲. 深部软弱围岩叠加拱承载体强度理论及应用研究[J]. 岩石力学与工程学报, 2010, 29(10):2135-2142. Yu Weijian, Gao Qian, Zhu Chuanqu. Study of strength theory and application of overlap arch bearing body for deep soft surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10):2135-2142. (in Chinese)
    [6] Fengyun Wang, Deling Qian. Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement[J]. Tunnelling and Underground Space Technology, 2018(82):66-81.
    [7] Ghorbani A, Hasanzadehshooiili H. A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses[J]. Journal of Civil Engineering and Management, 2017, 23(6):773-786.
    [8] 张顶立, 陈立平. 隧道围岩的复合结构特性及其荷载效应[J]. 岩石力学与工程学报, 2016, 35(3):456-469. Zhang Dingli, Chen Liping. Compound structural characteristics and load effect of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3):456-469. (in Chinese)
    [9] 孙毅, 张顶立. 隧道复杂支护结构体系的协同作用原理[J]. 工程力学, 2016, 33(12):52-62. Sun Yi, Zhang Dingli. Synergy principle of complex supporting structural systems in tunnels[J]. Engineering Mechanics, 2016, 33(12):52-62. (in Chinese)
    [10] 张顶立. 隧道围岩稳定性及其支护作用分析[J]. 北京交通大学学报, 2016, 40(4):9-18. Zhang Dingli. Analysis of surrounding rock stability and support action in tunnels[J]. Journal of Beijing Jiaotong University, 2016, 40(4):9-18. (in Chinese)
    [11] Bobet A, Einstein H H. Tunnel Reinforcement with Rockbolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1):100-123.
    [12] 沈华章, 王水林, 刘泉声. 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学, 2014, 35(6):1647-1654. Shen Huazhang, Wang Shuilin, Liu Quansheng. Simulation of constitutive curves for strain-softening rock in triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(6):1647-1654. (in Chinese)
    [13] 孙振宇, 张顶立, 房倩, 等. 隧道初期支护与围岩相互作用的时空演化特性[J]. 岩石力学与工程学报, 2017, 36(增2):3943-3956. Sun Zhenyu, Zhang Dingli, Fang Qian, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl 2):3943-3956.
    [14] 蔡美峰, 何满潮, 刘东燕. 岩石力学与工程[M]. 北京:科学出版社, 2002:327-328. Cai Meifeng, He Manchao, Liu Dongyan. Rock mechanics and engineering[M]. Beijing:Science Press, 2002:327-328. (in Chinese)
    [15] 孙振宇, 张顶立, 房倩, 等. 基于超前加固的深埋隧道围岩力学特性研究[J]. 工程力学, 2018, 35(2):92-104. Sun Zhenyu, Zhang Dingli, Fang Qian, et al. Research on the mechanical property of the surrounding rock of deep-buried tunnel based on the advanced reinforcement[J]. Engineering Mechanics, 2018, 35(2):92-104. (in Chinese)
    [16] Huang Z, Broch E, Lu M. Cavern roof stabilitymechanism of arching and stabilization by rockbolting[J]. Tunnelling and Underground Space Technology, 2002, 10(17):249-261.
    [17] Fahimifar A, Ranjbarnia M. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2009, 24(4):363-375.
    [18] Brown E T, Bray J W, Ladanyi B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, ASCE, 1983, 109(1):15-39.
    [19] CECS22:2005, 岩土锚杆(索)技术规程[S]. 北京:计划出版社, 2005. CECS22:2005, The technical specifications for ground anchor[S]. Beijing:China Planning Press, 2005. (in Chinese)
    [20] Wang S L, Yin S D, Wu Z J. Strain-softening analysis of a spherical cavity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36:182-202.
    [21] 左昌群, 丁少林, 刘代国, 等. 加锚云母片岩隧道围岩失效特征及力学效应[J]. 现代隧道技术, 2014, 51(4):39-45. Zuo Changqun, Ding Shaolin, Liu Daiguo, et al. Failure characteristics and the mechanical effect of mica schist in an anchored tunnel[J]. Modern Tunnelling Technology, 2014, 51(4):39-45. (in Chinese)
    [22] 龙景奎, 蒋斌松, 刘刚, 等. 巷道围岩协同锚固系统及其作用机理研究与应用[J]. 煤炭学报, 2012, 37(3):372-378. Long Jingkui, Jiang Binsong, Liu Gang, et al. Study on the mechanism and application of synergistic anchoring systems in roadway surrounding rocks[J]. Journal of China Coal Society, 2012, 37(3):372-378. (in Chinese)
    [23] 王琦, 李术才, 李为腾, 等. 让压型锚索箱梁支护系统组合构件耦合性能分析及应用[J]. 岩土力学, 2012, 33(11):3374-3384. Wang Qi, Li Shucai, Li Weiteng, et al. Analysis and application on combination components coupling of pressure relief anchor box beam support system[J]. Rock and Soil Mechanics, 2012, 33(11):3374-3384. (in Chinese)
    [24] Hoek E. Tunnel support in weak rock[C]//Symposium of Sedimentary Rock Engineering, Taipei, 1998:1-12.
    [25] TB 10003-2005, 铁路隧道设计规范[S]. 北京:中国铁道出版社, 2005. TB 10003-2005, Code for Design of Railway Tunnel[S]. Beijing:China Railway Publishing House, 2005. (in Chinese)
    [26] Panet M. Analyse de la Stabilité d'un Tunnel Creusé dans un Massif Rocheux en Tenant Compte du Comportement aprés la Rupture[J]. Rock Mechanics, 1976, 4(8):209-223.
  • 期刊类型引用(15)

    1. 王浩. 超大跨度隧道预应力锚杆与锚索组合支护设计方法. 隧道与地下工程灾害防治. 2025(01): 83-89 . 百度学术
    2. 尹恒. 中空注浆锚杆在浅埋暗挖法隧道中的应用与参数优化研究. 交通科技与管理. 2024(04): 74-77 . 百度学术
    3. 刘昌,张顶立,孙振宇,张素磊,方黄城,李然. 初支混凝土硬化特性与围岩流变耦合作用机制. 工程力学. 2023(01): 63-75+86 . 本站查看
    4. 张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 . 百度学术
    5. 孙振宇,皇甫楠琦,张顶立,李沐阳,王嘉琛. 大跨度隧道预应力锚固体系协同承载的压力拱效应. 铁道标准设计. 2023(01): 10-16+24 . 百度学术
    6. 朱乐章,黄北海,丁可. 极松软易破碎综放面巷道“降钻锚注平”支护技术. 煤炭工程. 2023(03): 47-51 . 百度学术
    7. 闻炼,黄亮,向欣,杨新志,章广成. 水电工程岩土锚固技术研究现状与发展趋势. 安全与环境工程. 2023(04): 35-45 . 百度学术
    8. 孙振宇,张顶立,刘道平,侯艳娟,李奥. 锚固体系作用下隧道围岩力学响应的全过程解析. 工程力学. 2022(07): 170-182 . 本站查看
    9. 周子寒,何川,陈子全,马伟斌,汪波,邹文浩. 基于围岩变形主动控制理念的隧道支护时机虚拟支撑力法. 中国铁道科学. 2022(06): 76-88 . 百度学术
    10. 张顶立,方黄城,陈立平,孙振宇. 隧道支护结构体系的刚度设计理论. 岩石力学与工程学报. 2021(04): 649-662 . 百度学术
    11. 孙振宇,张顶立,房倩,侯艳娟. 隧道支护结构体系协同优化设计方法及其应用. 岩土工程学报. 2021(03): 530-539 . 百度学术
    12. 王襄禹,张卫东,王广辉,吴博文,李军臣,郑哲. 张拉预紧式锚杆支护系统高能强化锚固机理研究. 煤炭科学技术. 2021(02): 38-44 . 百度学术
    13. 罗基伟,张顶立,房倩,李奥,刘道平,于霖,洪学飞. 超大跨度隧道预应力锚杆——锚索协同支护机理. 中国铁道科学. 2020(05): 71-82 . 百度学术
    14. 汪波,喻炜,刘锦超,王振宇,徐建强,吴德兴. 交通/水工隧道中基于预应力锚固系统的及时主动支护理念及其技术实现. 中国公路学报. 2020(12): 118-129 . 百度学术
    15. 周建,胡坚,王浩,杨新安. 深埋隧洞分步支护合理支护时机的力学研究. 工程力学. 2019(12): 145-152 . 本站查看

    其他类型引用(15)

计量
  • 文章访问数:  453
  • HTML全文浏览量:  84
  • PDF下载量:  71
  • 被引次数: 30
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-10-22
  • 刊出日期:  2019-05-24

目录

    /

    返回文章
    返回