基于Campbell模型的卡车与防撞柱最大碰撞力修正计算方法

胡波, 李国强

胡波, 李国强. 基于Campbell模型的卡车与防撞柱最大碰撞力修正计算方法[J]. 工程力学, 2017, 34(7): 79-88,155. DOI: 10.6052/j.issn.1000-4750.2016.01.0023
引用本文: 胡波, 李国强. 基于Campbell模型的卡车与防撞柱最大碰撞力修正计算方法[J]. 工程力学, 2017, 34(7): 79-88,155. DOI: 10.6052/j.issn.1000-4750.2016.01.0023
HU Bo, LI Guo-qiang. MODIFIED CALCULATION METHOD FOR MAXIMUM IMPACT FORCE BETWEEN TRUCK AND ANTI-RAM BOLLARD BASED ON CAMPBELL'S MODEL[J]. Engineering Mechanics, 2017, 34(7): 79-88,155. DOI: 10.6052/j.issn.1000-4750.2016.01.0023
Citation: HU Bo, LI Guo-qiang. MODIFIED CALCULATION METHOD FOR MAXIMUM IMPACT FORCE BETWEEN TRUCK AND ANTI-RAM BOLLARD BASED ON CAMPBELL'S MODEL[J]. Engineering Mechanics, 2017, 34(7): 79-88,155. DOI: 10.6052/j.issn.1000-4750.2016.01.0023

基于Campbell模型的卡车与防撞柱最大碰撞力修正计算方法

基金项目: 国家自然科学基金项目(51408175)
详细信息
    作者简介:

    李国强(1963-),男,湖南人,教授,博士,博导,从事结构工程研究(E-mail:gqli@tongji.edu.cn).

    通讯作者:

    胡波(1982-),男,安徽人,副教授,博士,硕导,从事防灾减灾及防护工程研究(E-mail:bohu@hfut.edu.cn).

  • 中图分类号: TU352.13

MODIFIED CALCULATION METHOD FOR MAXIMUM IMPACT FORCE BETWEEN TRUCK AND ANTI-RAM BOLLARD BASED ON CAMPBELL'S MODEL

  • 摘要: 为探究卡车冲击防撞柱过程中的最大碰撞力,开展了63组碰撞数值试验。根据碰撞后卡车变形特征分析,采用卡车等效变形对Campbell模型进行参数修正,提出了卡车与防撞柱最大碰撞力的修正计算方法,并对国内外相关规范建议的最大碰撞力计算方法的适用性进行了评估。研究表明,碰撞后卡车变形沿宽度呈中间大、两端小的不均匀分布。卡车等效变形不仅受卡车碰撞速度影响,还与防撞柱高度和直径、钢管屈服强度和厚度以及基础深度有关。与实车碰撞试验和数值模拟试验得到的最大碰撞力对比表明,《欧规1》附录B建议方法计算结果严重偏小,《欧规1》附录C和《公路规范》建议方法计算结果离散性较大,该文建议方法计算结果更加准确保守,适用于防撞柱结构设计。
    Abstract: In order to study the maximum impact forces of anti-ram bollards subjected to truck crash, sixty-three numerical experiments were conducted to simulate the crash processes. The crash features of the trucks after impact were presented and analyzed. Then, Campbell's model was modified using the truck equivalent crush. Based on the modifications, a new calculation method for the maximum impact force between truck and bollard was proposed. In addition, the applicability of the calculation methods in the domestic and international related specifications was evaluated. The results show that the distribution of the truck crash deformations after impact is not uniform in width, and the crush at the center is larger than that at the ends. Truck equivalent crush is not only influenced by the truck impact speed, but also related to the bollard height and diameter, the yield strength and thickness of steel tube, and the foundation depth. The comparisons between calculated results and experimental results from truck crash tests and numerical simulations indicate that the predictions by the Annex B of Eurocode 1 are much less, the predictions by the Annex C of Eurocode 1 and Chinese code JTG D81-2006 are dispersive, and the predictions by the proposed method are more accurate and conservative. Therefore, the modified calculation method based on Campbell's model can be applied to the design of anti-ram bollards.
  • [1] Coughlin A M, Musselman E S, Schokker A J, et al. Behavior of portable fiber reinforced concrete vehicle barriers subject to blasts from contact charges[J]. International Journal of Impact Engineering, 2010, 37(5):521-529.
    [2] SD-STD-02.01, Revision A, Test method for vehicle crash testing of perimeter barriers and gates[S]. Washington D C:U S. Department of State, 2003.
    [3] Ivory M A. Crash test report for perimeter barriers and gates tested to SD-STD-02.01, Revision A. Test report No. TR-P25039-02-NC[R]. Adelanto:KARCO Engineering, LLC, 2005.
    [4] Ivory M A. Crash test report for perimeter barriers and gates tested to SD-STD-02.01, Revision A. Test report No. TR-P25039-01-NC[R]. Adelanto:KARCO Engineering, LLC, 2005.
    [5] Ivory M A. Crash test report for perimeter barriers and gates tested to SD-STD-02.01, Revision A. Test report No. TR-P26212-01-NC[R]. Adelanto:KARCO Engineering, LLC, 2006.
    [6] Chen L, Xiao Y, Xiao G, et al. Test and numerical simulation of truck collision with anti-ram bollards[J]. International Journal of Impact Engineering, 2015, 75(1):30-39.
    [7] Hu B, Li G Q, Sun J Y. Numerical investigation of K4-rating shallow footing fixed anti-ram bollard system subjected to vehicle impact[J]. International Journal of Impact Engineering, 2014, 63(1):72-87.
    [8] BS EN 1991-1-1:2002, Eurocode 1:Actions on structures part 1-1:General actions-densities, self-weight, imposed loads for buildings[S]. European Committee for Standardization, 2002.
    [9] BS EN 1991-1-7:2006, Eurocode 1:Actions on Structures Part 1-7:General Actions-Accidental Actions[S]. European Committee for Standardization, 2006.
    [10] JTG D81-2006, 公路交通安全设施设计规范[S]. 北京:人民交通出版社, 2006. JTG D81-2006, Specification for design of highway safety facilities[S]. Beijing:China Communications Press, 2006. (in Chinese)
    [11] Campbell K L. Energy basis for collision severity[C]. 3rd International Conference on Occupant Protection. Michigan:SAE International, 1974:2114-2126.
    [12] Al-Thairy H, Wang Y C. A simplified analytical method for predicting the critical velocity of vehicle impact on steel columns[J]. Journal of Constructional Steel Research, 2014, 92(1):136-149.
    [13] Al-Thairy H, Wang Y C. Simplified FE vehicle model for assessing the vulnerability of axially compressed steel columns against vehicle frontal impact[J]. Journal of Constructional Steel Research, 2014, 102(12):190-203.
    [14] Malvar L J, Crawford J E, Wesevich J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873.
    [15] 程小卫, 李易, 陆新征, 等. 撞击荷载下钢筋混凝土柱动力响应的数值研究[J]. 工程力学, 2015, 32(2):53-63. Cheng Xiaowei, Li Yi, Lu Xinzheng, et al. Numerical investigation on dynamic response of reinforced concrete columns subjected to impact loading[J]. Engineering Mechanics, 2015, 32(2):53-63. (in Chinese)
    [16] 康翔杰, 刘艳辉, 许浒, 等. 低速冲击碰撞有限元分析中混凝土动态破坏面修正方法[J]. 工程力学, 2016, 33(3):135-142. Kang Xiangjie, Liu Yanhui, Xu Hu, et al. A modified method for defining concrete dynamic failure surface under low-speed impact finite element analysis[J]. Engineering Mechanics, 2016, 33(3):135-142. (in Chinese)
    [17] 夏超逸, 张楠, 夏禾. 汽车撞击作用下车桥系统的动力响应及高速列车运行安全分析[J]. 工程力学, 2013, 30(8):119-126. Xia Chaoyi, Zhang Nan, Xia He. Dynamic responses of train-bridge system subjected to truck collision and running safety evaluation of high-speed train[J]. Engineering Mechanics, 2013, 30(8):119-126. (in Chinese)
    [18] Sharma H, Gardoni P, Hurlebaus S. Performance-based probabilistic capacity models and fragility estimates for RC columns subject to vehicle collision[J]. ComputerAided Civil and Infrastructure Engineering, 2015, 30(7):555-569.
    [19] Hampton C E, Gabler H C. Development of a missing post repair guideline for longitudinal barrier crash safety[J]. Journal of Transportation Engineering, 2013, 139(6):549-555.
    [20] Thiyahuddin M I, Gu Y T, Gover R B, et al. Fluid-structure interaction analysis of full scale vehicle-barrier impact using coupled SPH-FEA[J]. International Journal of Impact Engineering, 2014, 42(5):26-36.
  • 期刊类型引用(3)

    1. 周翔,孙长存,王凯,程江,余丽娜. 客车气制动信号灯控制的改进设计. 客车技术与研究. 2019(04): 50-51+55 . 百度学术
    2. 李泽田,刘占峰,郑培. 小型轿车智能防追尾安全距离预警系统仿真. 计算机仿真. 2018(08): 96-100 . 百度学术
    3. 何烈云,沈艾中,周鹏. 公路护栏抗弯刚度对小客车碰撞运动形态的研究. 公路. 2018(12): 206-211 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  459
  • HTML全文浏览量:  49
  • PDF下载量:  101
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-05-12
  • 刊出日期:  2017-07-24

目录

    /

    返回文章
    返回