火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究

段进涛, 史旦达, 汪金辉, 焦宇, 何佩珊

段进涛, 史旦达, 汪金辉, 焦宇, 何佩珊. 火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究[J]. 工程力学, 2017, 34(2): 197-206. DOI: 10.6052/j.issn.1000-4750.2016.01.0061
引用本文: 段进涛, 史旦达, 汪金辉, 焦宇, 何佩珊. 火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究[J]. 工程力学, 2017, 34(2): 197-206. DOI: 10.6052/j.issn.1000-4750.2016.01.0061
DUAN Jin-tao, SHI Dan-da, WANG Jin-hui, JIAO Yu, HE Pei-shan. A STUDY OF THERMAL-MECHANICAL COUPLED METHOD OF ANALYZING STEEL STRUCTURES' THERMAL RESPONSE IN FIRE BASED ON FDS-ABAQUS[J]. Engineering Mechanics, 2017, 34(2): 197-206. DOI: 10.6052/j.issn.1000-4750.2016.01.0061
Citation: DUAN Jin-tao, SHI Dan-da, WANG Jin-hui, JIAO Yu, HE Pei-shan. A STUDY OF THERMAL-MECHANICAL COUPLED METHOD OF ANALYZING STEEL STRUCTURES' THERMAL RESPONSE IN FIRE BASED ON FDS-ABAQUS[J]. Engineering Mechanics, 2017, 34(2): 197-206. DOI: 10.6052/j.issn.1000-4750.2016.01.0061

火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究

基金项目: 国家自然科学基金项目(51109127,50909058);上海市自然科学基金项目(16ZR1414600);上海海事大学学术创新团队基金项目(A2-0201150404);上海市研究生教育创新计划实施项目学位点建设培育项目(20131129)
详细信息
    作者简介:

    段进涛(1989-),男,河南人,硕士生,从事海洋平台结构抗火研究(E-mail:djtworkholic@163.com);史旦达(1979-),男,浙江人,副教授,博士,副院长,从事海洋平台火灾研究(E-mail:ddshi@shmtu.edu.cn);汪金辉(1981-),男,安徽人,副教授,博士,从事船舶火灾研究(E-mail:wangjh@shmtu.edu.cn);何佩珊(1992-),女,广西人,硕士生,从事水利工程结构安全性研究(E-mail:peishanhe@126.com).

    通讯作者:

    焦宇(1981-),男,河南人,讲师,博士,从事船舶火灾研究(E-mail:yujiao@shmtu.edu.cn).

  • 中图分类号: TU391

A STUDY OF THERMAL-MECHANICAL COUPLED METHOD OF ANALYZING STEEL STRUCTURES' THERMAL RESPONSE IN FIRE BASED ON FDS-ABAQUS

  • 摘要: 火灾环境下钢结构热力耦合分析普遍采用ISO834标准升温曲线(或火灾升温经验公式)描述结构的升温过程,然而这种方法并不能准确描述真实火灾环境下结构的升温过程。为了分析钢结构在真实火灾温度场下的热响应行为,该文以整体结构作为研究对象,提出了基于FDS和ABAQUS的火-热-结构耦合分析方法。该方法通过创建FDS-ABAQUS耦合接口,将FDS模拟得到的火灾动态温度场数据传输到有限元软件ABAQUS中,使用ABAQUS对整体结构进行热力耦合计算,得到整体结构在特定火灾场景下的力学响应特性。案例分析表明,该文创建的耦合方法可将FDS模拟得到的温度场数据传输到ABAQUS模型,分析结果显示传输温度场数据最大误差为2.18%;模拟整体结构热响应行为时考虑不均匀热膨胀引起的内力,模拟结果更接近真实火灾场景下的力学响应。
    Abstract: To perform thermal-mechanical coupling analysis of steel structures, International Standard ISO834 is commonly employed to describe the temperature-time curve induced by a fire. However, previous studies demonstrated that the ISO834 cannot accurately describe the temperature profile in a real fire. Taking the overall structure as a research object, this paper developed a fire-thermal-structural coupled analysis method based on FDS and ABAQUS, which can be used to simulate the steel structures' thermal response according to the real temperature curve resulting from a fire. The dynamic temperature fields are transmitted from FDS to ABAQUS models through an FDS-ABAQUS coupling interface, which was developed in this study. Meanwhile the mechanical performance of the overall structure under fire is numerically analyzed using ABAQUS. The results of case study demonstrated that the proposed method can effectively transmit temperature fields from FDS to ABAQUS with an error of less than 2.18%. The results of simulation are more accurate when internal forces due to uneven thermal expansion are taken into account.
  • [1] 杨秀英, 赵金城. 不同路径对Q235钢材高温性能的影响[J]. 土木工程学报, 2010, 43(1):29-34. Yang Xiuying, Zhao Jincheng. The effect of multi-paths on mechanical properties of Q235 steel at elevated temperature[J]. China Civil Engineering Journal, 2010, 43(1):29-34. (in Chinese)
    [2] 魏德敏, 江雪玲. 钢结构非线性温度响应分析[J]. 华南理工大学学报(自然科学版), 2007, 35(10):85-91. Wei Demin, Jiang Xueling. Analyses of nonlinear temperature response of steel structures[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(10):85-91. (in Chinese)
    [3] 吕俊利, 董毓利, 孙建东, 杨志年. 无防火保护钢柱抗火性能的研究[J]. 工程力学, 2011, 28(增刊I):125-129. Lü Junli, Dong Yuli, Sun Jiandong, Yang Zhinian. Study on performance of exposed H-section steel column in fire[J]. Engineering Mechanics, 2011, 28(Suppl I):125-129. (in Chinese)
    [4] 薛素铎, 邱林波, 冯淼. 空间结构抗火性能研究进展[J]. 建筑钢结构进展, 2009, 11(3):29-36. Xue Suduo, Qiu Linbo, Feng Miao. Advances on fire-resistance behaviour of space structures[J]. Progress in Steel Building Structures, 2009, 11(3):29-36. (in Chinese)
    [5] 郑永乾, 韩林海, 经建生. 火灾下型钢混凝土梁力学性能的研究[J]. 工程力学, 2008, 25(9):118-126. Zheng Yongqian, Han Linhai, Jing Jiansheng. Research on behavior of steel reinforced concrete (SRC) beams in fire[J]. Engineering Mechanics, 2008, 25(9):118-126. (in Chinese)
    [6] 鞠竹, 王振清, 韩玉来, 梁文彦, 李加雷. 火灾高温作用下钢结构倒塌分析[J]. 工程力学, 2014, 31(增刊):121-124. Ju Zhu, Wang Zhenqing, Han Yulai, Liang Wenyan, Li Jialei. Structure collapse analysis of steel frame under fire condition[J]. Engineering Mechanics, 2014, 31(Suppl):121-124. (in Chinese)
    [7] 周侃, 韩林海, 宋天诣. 钢管混凝土柱-RC梁平面框架耐火性能分析[J]. 工程力学, 2014, 31(增刊):41-46. Zhou Kan, Han Linhai, Song Tianyi. Analytical behavior of concrete filled steel tubular column-reinforced concrete beam planar frames subjected to fire[J]. Engineering Mechanics, 2014, 31(Suppl):41-46. (in Chinese)
    [8] 韩祎, 王景玄, 王文达. 内配型钢方钢管混凝土偏压构件受火全过程数值模拟[J]. 工程力学, 2015, 32(增刊):60-66. Han Yi, Wang Jingxuan, Wang Wanda. Numerical simulation analysis on concrete-filled square steel tubular columns with internal profiled steel under eccentric compression exposure to full-range fire[J]. Engineering Mechanics, 2015, 32(Suppl):60-66. (in Chinese)
    [9] 英明鉴, 李易, 陆新征, 叶列平, 闫维明. 某超高层混凝土结构火灾作用下的力学响应分析[J]. 工程力学, 2015, 32(5):19-27. Ying Mingjian, Li Yi, Lu Xinzheng, Ye Lieping, Yan Weiming. The mechanical response analysis of a super tall concrete structure under fire[J]. Engineering Mechanics, 2015, 32(5):19-27. (in Chinese)
    [10] 姜兰潮, 杨乃勰. 钢网壳抗火非线性有限元分析[J]. 中国安全科学学报, 2006, 16(2):39-42. Jing Lanchao, Yang Naixie. Non-linear finite element analysis of fire resistance for steel truss dome[J]. China Safety Science Journal, 2006, 16(2):39-42. (in Chinese)
    [11] 张超, 李国强. 基于FDS模拟分析的建筑大空间火灾下钢构件的升温确定方法研究[J]. 防灾减灾工程学报, 2012, 32(增刊):68-71. Zhao Chao, Li Guoqiang. FDS Simulation of temperature elevation of steel members exposed to large space fire[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(Suppl):68-71. (in Chinese)
    [12] 李易, 陆新征, 英明鉴, 叶列平, 闫维明. 某框支砌体结构火灾倒塌事故的模拟与分析[J]. 工程力学, 2014, 31(2):66-72. Li Yi, Lu Xinzheng, Ying Mingjian, Ye Lieping, Yan Weiming. The simulation and analysis of the collapse of a frame-supported masonry structure under fire[J]. Engineering Mechanics, 2014, 31(2):66-72. (in Chinese)
    [13] 石永久, 白音, 王元清. 大空间结构防火性能化设计方法研究[J]. 空间结构, 2005, 11(4):16-20. Shi Yongjiu, Bai Yin, Wang Yuanqing. Studies on performance-based fire-resisting design method for large-space structures[J]. Spatial Structures, 2005, 11(4):16-20. (in Chinese)
    [14] 史健勇, 孙旋, 刘文利, 李引擎. 基于整体的大空间钢结构性能化防火设计方法研究[J]. 土木工程学报, 2011, 44(5):69-78. Shi Jianyong, Sun Xuan, Liu Wenli, Li Yinqing. Study of performance-based fire resistance design methodology for large space structures[J]. China Civil Engineering Journal, 2011, 44(5):69-78. (in Chinese)
    [15] 史健勇, 赵金城. 复杂空间钢结构整体性防火分析的系统方法研究[J]. 土木工程学报, 2008, 41(11):51-62. Shi Jianyong, Zhao Jincheng. A study of systems methodology for whole structural fire resistance of complex spatial steel buildings[J]. China Civil Engineering Journal, 2008, 41(11):51-62. (in Chinese)
    [16] 李超. 基于火-热-结构耦合的建筑火灾模拟方法研究及应用[D]. 上海:上海交通大学, 2013:9-23. Li Chao. Study on the numerical simulation of building fire based on fire-thermal-structural coupling method and its application[D]. Shanghai:Shanghai Jiao Tong University, 2013:9-23. (in Chinese)
    [17] 白音, 石永久, 王元清. 火灾下大空间结构温度场的数值模拟分析[J]. 中国安全科学学报, 2006, 16(1):34-39. Bai Yin, Shi Yongjiu, Wang Yuanqing. Numerical simulation analysis on temperature field for large-space structures under fire[J]. China Safety Science Journal, 2006, 16(1):34-39. (in Chinese)
    [18] Chen L G, Luo C, Lua J. FDS and Abaqus coupling toolkit for fire simulation and thermal and mass flow prediction[C]. Proceedings of the International Symposium on Fire Safety Science 10th, International Association for Fire Safety Science, UK, 2011:1465-1478.
    [19] Jeffers A E, Sotelino E D. An efficient fiber element approach for the thermo-structural simulation of non-uniformly heated frames[J]. Fire Safety Journal, 2012, 51(7):18-26.
    [20] Jeffers A E. Heat transfer element for modeling the thermal response of non-uniformly heated plates[J]. Finite Elements in Analysis and Design, 2013, 63(1):62-68.
    [21] Jeffers A E, Beata P A. Generalized shell heat transfer element for modeling the thermal responses of non-uniformly heated structures[J]. Finite Elements in Analysis and Design, 2014, 83(1):58-67.
    [22] Jeffers A E. Triangular shell heat transfer element for the thermal analysis of non-uniformly heat structures[J]. Journal of Structural Engineering, 2016, 142(1):1-9.
    [23] Yu X, Jeffers A E. A comparison of subcycling algorithms for bridging dis-parities in temporal scale between the fire and solid domains[J]. Fire Safety Journal, 2013, 59(7):55-61.
    [24] Beata P A, Jeffers A E. Spatial homogenization algorithm for bridging disparities in scale between the fire and solid domains[J]. Fire Safety Journal, 2015, 76(8):19-30.
    [25] Zhang C, Silva J G, Weinschenk C. Simulation methodology for coupled fire-structure analysis:Modeling localized fire tests on a steel column[J]. Fire Technology, 2015, 51(4):1-14.
    [26] McGrattan K, Hostikka S, McDermott R, et al. Fire dynamics simulator, user's guide[M]. 6th ed. Maryland:National Institute of Standards and Technology, 2014:219-259.
    [27] Banerjee D K. A software independent tool for mapping thermal results to structural model[J]. Fire Safety Journal, 2014, 68:1-15.
    [28] 史健勇, 任爱珠. 计算机仿真技术应用于奥运场馆火灾安全分析[J]. 自然灾害学报, 2005, 14(4):95-102. Shi Jianyong, Ren Aizhu. Application of computer simulation technology to fire safety analysis of gymnasiums for 2008 Olympic Games[J]. Journal of Natural Disasters, 2005, 14(4):95-102. (in Chinese)
    [29] 曹彬, 张礼敬, 张村峰, 王益敏. 比较FDS和FLUENT在池火灾模拟中的应用[J]. 中国安全生产科学技术, 2011, 7(9):45-49. Cao Bin, Zhang Lijing, Zhang Cunfeng, Wang Yimin. Comparison of FDS and FLUENT applied in pool fire simulation[J]. Journal of Safety Science and Technology, 2011, 7(9):45-49. (in Chinese)
    [30] 王阳, 罗宇. 几种焊接热弹塑性有限元分析软件的比较[J]. 热加工工艺, 2013, 42(11):5-12. Wang Yang, Luo Yu. Comparison on several kinds of T-E-P FEM software for welding[J]. Hot Working Technology, 2013, 42(11):5-12. (in Chinese)
    [31] 李文昌. 预应力H型钢筋混凝土组合受弯构件分线性分析[D]. 哈尔滨:东北林业大学, 2013:56-57. Li Wenchang. Nonlinear analysis of flexural behavior in encased H-steel prestressed concrete composite beam[D]. Harbin:Northeast Forestry University, 2013:56-57. (in Chinese)
    [32] 朱丽丽. ABAQUS显式分析梁单元的混凝土、钢筋本构模型研究[D]. 沈阳:沈阳建筑大学, 2012:61-62. Zhu Lili. Study on the constitutive model of concrete and steel for explicit dynamic beam elements of ABAQUS[D]. Shenyang:Shenyang Jianzhu University, 2012:61-62. (in Chinese)
    [33] 李人宪. 有限体积法基础[M]. 北京:国防工业出版社, 2005:7-34. Li Renxian. The foundation of finite volume method[M]. Beijing:National Defend Industry Press, 2005:7-34. (in Chinese)
    [34] 孔祥谦. 有限单元法在传热学中的应用[M]. 上海:科学出版社, 1998:237-246. Kong Xiangqian. The application of finite element method in heat transfer[M]. Shanghai:Science Press, 1998:237-246. (in Chinese)
    [35] Eurocode 3. Design of steel structures-Part 1.2:General rules-structural fire design[S]. Brussels:Commission of European Communities, 2001.
  • 期刊类型引用(14)

    1. 李聪聪,凌晨冰,孟祥俊伟,肖庆彪,冯立言,江文强. 火灾环境下特高压钢管塔的最小安全距离研究. 电力科学与工程. 2023(02): 72-78 . 百度学术
    2. 郭睿,赵东拂,李磊. 大空间预应力梁抗火性能研究. 建筑结构. 2023(S1): 1672-1676 . 百度学术
    3. 万豪,张岗. 开放火灾下拉索截面温度效应计算方法. 工程力学. 2023(12): 113-123 . 本站查看
    4. 杨冬冬,万鹏程,王琨,王烨淳. 基于FDS的真实火灾下钢管约束钢筋混凝土柱抗火性能. 扬州大学学报(自然科学版). 2023(06): 65-72+78 . 百度学术
    5. 汪金辉,蔡威,张宪达,程彦全,巴光忠. 考虑火源位置的船舶机舱火-热-结构耦合研究. 中国安全科学学报. 2022(02): 121-129 . 百度学术
    6. 杨澜,蹇开林,张亮. 凹凸边界形状热弹性问题的自适应无网格法. 重庆大学学报. 2022(12): 36-47 . 百度学术
    7. 汪金辉,张宪达,陈科烨. 顶部开口船舱火灾下结构热力耦合方法研究. 中国舰船研究. 2021(03): 74-85+111 . 百度学术
    8. 焦宇,王子意,熊湿,丛北华,汪金辉,王欢. 火灾环境下钢结构力学响应行为研究回溯与前瞻. 安全与环境学报. 2021(04): 1496-1505 . 百度学术
    9. 王建军,詹子娜,李磊. 某高炉室外钢框架柱抗火性能研究. 建筑科学. 2020(01): 117-122 . 百度学术
    10. 陈荣淋. 水平火灾实验炉试验与模拟分析. 华侨大学学报(自然科学版). 2020(02): 171-176 . 百度学术
    11. 王峰,郑保敬,林皋,周宜红,范勇. 热弹性动力学耦合问题的插值型移动最小二乘无网格法研究. 工程力学. 2019(04): 37-43+51 . 本站查看
    12. 段进涛,董毓利,林剑青,朱三凡. 改进热平衡法的燃油式火灾试验炉模拟与分析. 华侨大学学报(自然科学版). 2019(04): 483-488 . 百度学术
    13. 郭相凯,汪金辉,陈科烨,杨宇鹏. 火灾环境下钢结构力学响应行为研究进展. 消防技术与产品信息. 2018(08): 18-23 . 百度学术
    14. 陈宏磊. 基于FDS的综合管廊天然气泄漏火灾特性研究. 福建建设科技. 2017(04): 30-32+83 . 百度学术

    其他类型引用(25)

计量
  • 文章访问数:  1056
  • HTML全文浏览量:  176
  • PDF下载量:  348
  • 被引次数: 39
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-06-25
  • 刊出日期:  2017-02-24

目录

    /

    返回文章
    返回