预应力钢绞线高温力学性能试验研究

杜咏, 孙亚凯, 李国强

杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238. DOI: 10.6052/j.issn.1000-4750.2018.03.0141
引用本文: 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238. DOI: 10.6052/j.issn.1000-4750.2018.03.0141
DU Yong, SUN Ya-kai, LI Guo-qiang. MECHANICAL PROPERTIES OF HIGH TENSILE STEEL CABLES AT ELEVATED TEMPERATURE[J]. Engineering Mechanics, 2019, 36(4): 231-238. DOI: 10.6052/j.issn.1000-4750.2018.03.0141
Citation: DU Yong, SUN Ya-kai, LI Guo-qiang. MECHANICAL PROPERTIES OF HIGH TENSILE STEEL CABLES AT ELEVATED TEMPERATURE[J]. Engineering Mechanics, 2019, 36(4): 231-238. DOI: 10.6052/j.issn.1000-4750.2018.03.0141

预应力钢绞线高温力学性能试验研究

基金项目: 国家自然科学基金面上项目(51878348);土木工程防灾国家重点实验室开放基金项目(SLDRCE14-05)
详细信息
    作者简介:

    孙亚凯(1991-),男,河南人,硕士生,从事钢结构抗火研究(E-mail:sunyakai001@163.com);李国强(1963-),男,湖南人,教授,博士,主要从事多高层建筑钢结构分析与设计理论、钢结构抗火计算与设计理论研究(E-mail:gqli@tongji.edu.cn).

    通讯作者:

    杜咏(1967-),女,重庆人,教授,博士,从事建筑结构抗火研究(E-mail:yongdu_mail@njtech.edu.cn).

  • 中图分类号: TU511.3

MECHANICAL PROPERTIES OF HIGH TENSILE STEEL CABLES AT ELEVATED TEMPERATURE

  • 摘要: 该文采用非接触式应变视频测量系统,开展了冷拉1860级钢绞线高温力学性能试验研究。基于试验测试的钢绞线高温应力-应变全过程曲线,建议了预应力钢结构用钢绞线的比例极限、弹性模量、名义屈服强度、断裂强度的高温折减系数以及高温应力-应变函数关系。试验结果表明,高强冷拉钢绞线高温下应力-应变全过程具有显著的应力强化阶段和颈缩阶段,1.25%应变下的高温名义屈服强度适用于高强冷拉钢绞线,钢绞线在高温下的捻度松弛效应对其高温力学性能存在影响。该研究成果进一步完善了预应力张拉钢结构用冷拉高强钢绞线高温下基本力学性能指标体系。
    Abstract: This study is motivated by increasingly prevalent use of cable-tensioned spatial steel structures and suspension bridges. Fire is one of the extreme conditions that need to be taken into consideration in the design of such structures. Steady-state tests have been conducted on steel cables with tensile strength of 1860MPa, which consist of a group of 7-wire twisted strands, to study their full range of stress strain relationships at elevated temperature. The thermal elongation test of steel cables has also been conducted. A charge-coupled device camera (CCDC) system is used to capture the full range of the stress-strain relationship of high tensile strength steel cables till rapture at elevated temperature. The reduction factors of proportional limit, elastic modules, effective yield strength and rupture strength at different temperature were obtained from the steady state tests and compared with that proposed by EN 1992-1-2. The test data discovered that EN 1992-1-2 overestimated effective strain up to 2% and ignored the stress hardening phase for high tensile strength cables within the full temperature range. The effective yield strength with 1.25% strain and a full range of stress-stain model considering stress hardening phase, which has been ignored by EN 1992-1-2, are proposed by the present test data. Finally, several sets of reduction factors and thermal elongation coefficients as a function of temperature have been proposed by fitting test results. The present test data discovered that the reduction factors of pre-stressing strands proposed by EN 1992-1-2 for pre-stressing concrete is not suitable for steel cables which always employed by tensile steel structures. The reduction factors proposed by present paper are reasonable for steel cables. Furthermore, the comparison of reduction factors between steel cables and single wires, it discovered the effect of twist on the mechanic properties at elevated temperature.
  • [1] Masao S, Akira O. The role of string in hybrid string structure[J]. Engineering Structures, 1999, 21:756-769.
    [2] EN 1992-1-1, Design of concrete structures. Part 1.1 General rules and rules for buildings[S]. CEN, 2004.
    [3] BS 5896, Specification for high tensile steel wire and strand for the pre-stressing of concrete[S]. British Standard Institution, 2012.
    [4] ASTM A416/A416M-02, Standard specification for steel strand, uncoated seven-wire for pre-stressed concrete. West Conshohocken, Pa, USA, 2015.
    [5] ACI 216.1-14, Code Requirements for determining fire resistance of concrete and masonry construction assemblies[S]. American Concrete Institute, Farmington, MI, 2014.
    [6] Marti-Vargas J R. Design for fire resistance of precast-prestressed concrete[J]. PCI Journal, 2013, 58(4):118-120.
    [7] EN 1992-1-2, Design of concrete structures. Part 1.2 General rules-Structural fire design[S]. CEN, 2004.
    [8] Abrams M S, Cruz C R, Behavior at high temperature of steel strand for pre-stressed concrete[J]. Portland Cement Association Research and Development Laboratories. 1961, 3:8-19.
    [9] Harmathy T Z, Stanzak W W. Elevated temperature tensile and creep properties of some structural and pre-stressing steels. ASTM STP-464:Fire Test Performance, 1970:186-208.
    [10] Holmes M, Anchor R D, Cook G M E, et al. Effects of elevated temperatures on the strength properties of reinforcing and pre-stressing steels[J]. Structural Engineer Journal part B:R&D Quarterly, 1982, 60:7-13.
    [11] Shakya A M, Kodur V K R. Effect of temperature on the mechanical properties of low relaxation seven-wire pre-stressing strand[J]. Construction and Building Materials, 2016, 124:74-84.
    [12] Xiong Mingxiang,Richard Liew J Y, Mechanical properties of heat-treated high tensile structural steel at elevated temperature[J]. Thin-walled Structures, 2016, 98:169-176.
    [13] Chu T C, Ranson W F, Sutton M A. Applications of digital-image-correlation techniques to experimental mechanics[J]. Experimental Mechanics, 1985, 25:232-244.
    [14] Lyons J, Liu J, Sutton M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36:64-70.
    [15] GB/T 4338-2006, 金属材料高温拉伸试验方法[S]. 北京:中国标准出版社, 2007. GB/T 4338-2006, Metallic materials-Tensile testing at elevated temperature[S]. Beijing:China Standard Press, 2007. (in Chinese)
    [16] 周焕廷, 李国强. 高温下钢绞线材料力学性能的试验研究[J]. 四川大学学报, 2008, 40(5):106-110. Zhou Huanting, Li Guoqiang, Experimental studies on the properties of steel strand at elevated temperatures, Journal of Sichuan University, 2008, 40(5):106-110. (in Chinese)
    [17] 张昊宇, 郑文忠. 1860级低松弛钢绞线高温下力学性能[J]. 哈尔滨工业大学学报, 2007, 39(6):861-865. Zhang Haoyu, Zheng Wenzhong, Mechanical property of steel strand at high temperature, Journal of Harbin Institute of Technology, China, 2007, 39(6):861-865. (in Chinese)
    [18] 范进, 吕志涛. 受高温作用时预应力钢绞线性能的试验研究[J]. 建筑结构, 2002, 32(3):50-63. Fan Jin, Lü Zhitao. Experimental study on the pre-stressed steel strand at high temperature[J]. Building Structure Journal, China, 2002, 32(2):50-63. (in Chinese)
    [19] Conor T. Mechanical properties of cold-drawn steel strand at elevated temperature[D]. Lehigh University. 2015.
    [20] EN 1993-1-2, Design of steel structures. Part 1-2. General rules. Structural fire[S]. CEN, 2007.
  • 期刊类型引用(9)

    1. 楼国彪,侯婧,戚洪辉,宋战辉,李国强. 高强钢丝和钢绞线热膨胀和高温力学性能试验研究. 建筑结构学报. 2024(04): 198-205 . 百度学术
    2. 李吉兴,杨晓天. 低温条件下预应力钢绞线性能试验分析. 中国建筑金属结构. 2024(01): 22-24 . 百度学术
    3. 陈争荣,蒋彬辉,尹中原,王卓琳,王莉萍. 考虑动力效应的箱型截面钢柱火灾下屈曲温度与临界温度研究. 中南大学学报(自然科学版). 2024(02): 574-585 . 百度学术
    4. 楼国彪,侯婧,戚洪辉,宋战辉. 钢绞线热铸锚节点高温下抗拉性能试验研究. 湖南大学学报(自然科学版). 2024(03): 1-7 . 百度学术
    5. 李浩华,陈华鹏,罗伟兵,张国印,李苇航. 钢绞线导波传播特性研究. 工程力学. 2024(S1): 98-103 . 本站查看
    6. 廖滨,胡焕伟,仇实. 预应力钢绞线高温力学性能研究进展. 广东建材. 2022(03): 25-27+11 . 百度学术
    7. 中国桥梁工程学术研究综述·2021. 中国公路学报. 2021(02): 1-97 . 百度学术
    8. 郭刘潞,刘红波,陈志华,樊泽源. 高温下热铸锚拉索的力学性能研究. 空间结构. 2021(02): 49-55 . 百度学术
    9. 倪剑,周勇,钱勇. 高温小规格螺栓拧紧力矩研究. 东方汽轮机. 2021(02): 12-16 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  736
  • HTML全文浏览量:  121
  • PDF下载量:  154
  • 被引次数: 22
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-12-26
  • 刊出日期:  2019-04-24

目录

    /

    返回文章
    返回