基于有限监测数据的建筑群模型基本周期更新方法

陈夏楠, 林旭川, 张令心, 高武平, 宋春

陈夏楠, 林旭川, 张令心, 高武平, 宋春. 基于有限监测数据的建筑群模型基本周期更新方法[J]. 工程力学.
引用本文: 陈夏楠, 林旭川, 张令心, 高武平, 宋春. 基于有限监测数据的建筑群模型基本周期更新方法[J]. 工程力学.
CHEN Xia-nan, LIN Xu-chuan, ZHANG Ling-xin, GAO Wu-ping, SONG Chun. LIMITED MONITORING DATA BASED UPDATING METHOD FOR FUNDAMENTAL PERIOD OF THE BUILDING GROUP MODEL[J]. Engineering Mechanics.
Citation: CHEN Xia-nan, LIN Xu-chuan, ZHANG Ling-xin, GAO Wu-ping, SONG Chun. LIMITED MONITORING DATA BASED UPDATING METHOD FOR FUNDAMENTAL PERIOD OF THE BUILDING GROUP MODEL[J]. Engineering Mechanics.

基于有限监测数据的建筑群模型基本周期更新方法

基金项目: 国家自然科学基金项目(U2139209);黑龙江省头雁行动计划项目;地震科技星火计划项目(XH24041YB)
详细信息
    作者简介:

    陈夏楠(1987−),女,山西人,助理研究员,博士,一级注册结构工程师,主要从事区域震害模拟研究(E-mail: xianan0527@126.com)

    林旭川(1984−),男,浙江人,研究员,博士,博导,主要从事区域震害模拟和钢结构抗震减震研究(E-mail: linxc03@gmail.com)

    高武平(1981−),男,四川人,高工,博士,主要从事地震动数值模拟与地震灾害风险评估研究(E-mail: gwpp123@126.com)

    宋 春(2000−),男,河南人,硕士生,主要从事城市震害模拟和人群疏散仿真研究(E-mail: shyr0796@163.com)

    通讯作者:

    张令心(1967−),女,黑龙江人,研究员,博士,博导,主要从事结构抗震及综合防灾研究(E-mail: lingxin_zh@126.com)

  • 中图分类号: TU311;P315.9

LIMITED MONITORING DATA BASED UPDATING METHOD FOR FUNDAMENTAL PERIOD OF THE BUILDING GROUP MODEL

  • 摘要:

    通常情况下区域建筑群中仅有数量十分有限的建筑布设结构监测台阵,为充分利用有限监测建筑的监测数据提升建筑群震害模拟的精度,该研究提出了基于贝叶斯参数学习算法的建筑群模型参数更新方法通用流程,该通用流程通过采用有限监测建筑的监测数据更新建筑模型参数经验公式,以实现建筑群中所有建筑的模型参数更新。该研究选择建筑群震害分析模型的关键模型参数,即基本周期,在上述方法通用流程下推导了建筑群模型基本周期更新方法,通过建立虚拟建筑群对该方法进行了参数分析,并采用建筑群实测数据对该方法进行了进一步验证。结果表明:该方法能有效提升建筑群模型基本周期的计算精度;满足最低要求的监测建筑数量占比与经验公式参数初始均值误差、经验公式参数初始变异系数取值以及经验公式误差标准差取值密切相关,建议监测建筑数量占比取值最少为4%。该文研究为基于有限监测建筑监测数据的建筑群模型标定和更新提供了可行方法。

    Abstract:

    Usually, only a very limited number of buildings in a region are equipped with structural monitoring arrays. In order to improve the accuracy of earthquake damage simulation for building groups with limited monitoring data, a framework for updating the model parameters of the building groups based on Bayesian parameter learning algorithm was established. In this framework, the model parameters of all buildings are updated through updating the empirical calculation formula of the model parameters based on the limited monitoring data. In this study, the fundamental period that best represents the dynamic characteristics of the structure was selected, and the updating algorithm for the fundamental period of the building groups was derived under the above framework. A parameter analysis of the updating method for the fundamental period was conducted by using a virtual building group. And the proposed method was further validated by using measured data from real building groups. The results show that this method can effectively improve the accuracy of the estimated fundamental period of the building groups; The proportion of monitoring buildings that meet the minimum requirements is closely related to error of the initial average value of empirical formula parameters, the initial coefficient of variation of empirical formula parameters, and the standard deviation of empirical formula errors. It is recommended that the proportion of monitoring buildings be set at a minimum of 4%. This study provides a feasible method for calibrating and updating building group models based on the data of limited number of monitored buildings.

  • 图  1   剪切弹簧骨架曲线

    Figure  1.   Skeleton curve of the shear spring

    图  2   基于贝叶斯的建筑群模型参数更新方法通用流程

    Figure  2.   Framework of Bayesian-based updating method for building group model

    图  3   不同基本周期更新后误差对应的监测建筑数量占比

    Figure  3.   Error of the updated fundamental period under different proportions of the monitored buildings

    图  4   公式参数初始变异系数的不同取值对应的参数a的更新历程

    Figure  4.   Iteration history of parameter a under different values of initial variation coefficient of the empirical formula parameters

    图  5   公式参数初始变异系数的不同取值对应的参数b的更新历程

    Figure  5.   Iteration history of parameter b under different values of initial variation coefficient of the empirical formula parameters

    图  6   公式误差标准差的不同取值对应的参数a的更新历程

    Figure  6.   Iteration history of parameter a under different values of standard deviation of the error of the empirical formula

    图  7   公式误差标准差的不同取值对应的参数b的更新历程

    Figure  7.   Iteration history of parameter b under different values of standard deviation of the error of the empirical formula

    图  8   经验公式参数初始均值取值与真实值相差20%时的监测建筑数量最低占比

    Figure  8.   Minimum proportion of monitored buildings under the cases that the error between the initial value and the real value of the parameters of the empirical formula is 20%

    图  9   经验公式参数初始均值取值与真实值相差40%时的监测建筑最低占比

    Figure  9.   Minimum proportion of monitored buildings under the cases that the error between the initial value and the real value of the parameters of the empirical formula is 40%

    图  10   经验公式参数初始均值取值与真实值相差60%时的监测建筑最低占比

    Figure  10.   Minimum proportion of monitored buildings under the cases that the error between the initial value and the real value of the parameters of the empirical formula is 60%

    图  11   对应不同更新次数的基本周期相对误差平均值

    Figure  11.   The average value of relative errors of the fundamental period corresponding to different number of updating times

    图  12   对应不同基本周期相对误差的建筑数量占比

    Figure  12.   Proportion of buildings corresponding to different relative errors of fundamental periods

    图  13   对应不同基本周期相对误差的建筑数量累计占比

    Figure  13.   Cumulative proportion of buildings corresponding to different relative errors of fundamental periods

    表  1   不同高度建筑数量占比

    Table  1   Proportion of buildings with different heights

    高度/m30~4040~5050~6060~70>70
    数量占比/(%)7315921
    下载: 导出CSV

    表  2   不同层数建筑数量占比

    Table  2   Proportion of buildings with different number of stories

    层数/层10~1112~1314~1516~1718~19>20
    数量占比/(%)57219652
    下载: 导出CSV
  • [1] 林旭川. 城市建筑群地震灾害数值仿真与风险控制[J]. 城市与减灾, 2017(3): 18 − 22.

    LIN Xuchuan. Earthquake disaster simulations and risk control for city buildings [J]. City and Disaster Reduction, 2017(3): 18 − 22. (in Chinese)

    [2]

    HORI M, ICHIMURA T, OGUNI K. Development of integrated earthquake simulation for estimation of strong ground motion, structural responses and human actions in urban areas [J]. Asian Journal of Civil Engineering, 2006, 7(4): 381 − 392.

    [3]

    LU X Z, GUAN H. 2017. Earthquake disaster simulation of civil infrastructures: From tall buildings to urban areas [M]. Beijing: Science Press, 2017: 351 − 384.

    [4] 林旭川, 刘雪艳, 胡仁康, 等. 鲁甸地震宏观震中建筑群震害分析与抗震韧性评估[J]. 地震研究, 2020, 43(3): 449 − 455. doi: 10.3969/j.issn.1000-0666.2020.03.004

    LIN Xuchuan, LIU Xueyan, HU Renkang, et al. Regional damage analysis and resilience evaluation of buildings in the epicenter region of 2014 Ludian earthquake [J]. Journal of Seismological Research, 2020, 43(3): 449 − 455. (in Chinese) doi: 10.3969/j.issn.1000-0666.2020.03.004

    [5] 潘毅, 张兰林, 林旭川, 张彪. 泸县6.0级地震城市建筑群震害模拟与震害机理分析[J]. 防灾减灾工程学报, 2024, 44(05): 977 − 986.

    PAN Yi, ZHANG Lanlin, LIN Xuchuan, ZHANG Biao. Simulation and Mechanism Analysis of Seismic Damage to Urban Buildings Groups during the Ms 6.0 Luxian Earthquaks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(05): 977 − 986. (in Chinese)

    [6]

    XU Y J, LU X Z, TIAN Y, et al. Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning [J]. Journal of Earthquake Engineering, 2022, 26(8): 4259 − 4279. doi: 10.1080/13632469.2020.1826371

    [7]

    XU Y J, LU X Z, CETINER B, et al. Real-time regional seismic damage assessment framework based on long short-term memory neural network [J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(4): 504 − 521. doi: 10.1111/mice.12628

    [8]

    CHEN X N, ZHANG L X, LIN X C, et al. A clustering-based analysis method for simulating seismic damage of buildings in large cities [J]. Engineering Structures, 2024, 307: 117860. doi: 10.1016/j.engstruct.2024.117860

    [9]

    CHEN X N, LIN X C, ZHANG L X, et al. Method for rapidly generating urban damage scenarios under non-uniform ground motion input based on matching algorithms and time history analyses [J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107055. doi: 10.1016/j.soildyn.2021.107055

    [10]

    MOTTERSHEAD J E, FRISWELL M I. Model updating in structural dynamics: A survey [J]. Journal of Sound and Vibration, 1993, 167(2): 347 − 375. doi: 10.1006/jsvi.1993.1340

    [11]

    HUANG X H, DYKE S, SUN Z X, et al. Simultaneous identification of stiffness, mass, and damping using an on‐line model updating approach [J]. Structural Control and Health Monitoring, 2016, 24(4): e1892.

    [12]

    WU M L, SMYTH A W. Application of the unscented Kalman filter for real‐time nonlinear structural system identification [J]. Structural Control and Health Monitoring, 2007, 14(7): 971 − 990. doi: 10.1002/stc.186

    [13]

    FRISWELL M I, PENNY J E T. Updating model parameters from frequency domain data via reduced order models [J]. Mechanical Systems and Signal Processing, 1990, 4(5): 377 − 391. doi: 10.1016/0888-3270(90)90064-R

    [14]

    YANG Y B, CHEN Y J. Direct versus iterative model updating methods for mass and stiffness matrices [J]. International Journal of Structural Stability and Dynamics, 2010, 10(2): 165 − 186. doi: 10.1142/S0219455410003518

    [15]

    BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties. I: Bayesian statistical framework [J]. Journal of Engineering Mechanics, 1998, 124(4): 455 − 461. doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)

    [16]

    DAS A, DEBNATH N. A Bayesian model updating with incomplete complex modal data [J]. Mechanical Systems and Signal Processing, 2020, 136: 106524. doi: 10.1016/j.ymssp.2019.106524

    [17]

    CAMPOSTRINI G P, TAFFAREL S, BETTIOL G, et al. A Bayesian approach to rapid seismic vulnerability assessment at urban scale [J]. International Journal of Architectural Heritage, 2018, 12(1): 36 − 46. doi: 10.1080/15583058.2017.1370506

    [18]

    BARTOLI G, BETTI M, MARRA A M, et al. A Bayesian model updating framework for robust seismic fragility analysis of non-isolated historic masonry towers [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2155): 20190024. doi: 10.1098/rsta.2019.0024

    [19] 熊琛. 基于时程分析和三维场景可视化的区域建筑震害模拟研究[D]. 北京: 清华大学, 2016.

    XIONG Chen. Study on the regional building seismic damage simulation based on time-history analysis and 3D scene visualization [D]. Beijing: Tsinghua University, 2016. (in Chinese)

    [20]

    KOCHENDERFER M J, WHEELER T A, WRAY K H. Algorithms for decision making [M]. Cambridge: MIT Press, 2022: 71 − 74.

    [21]

    MUSTAFA S, DEBNATH N, DUTTA A. Bayesian probabilistic approach for model updating and damage detection for a large truss bridge [J]. International Journal of Steel Structures, 2015, 15(2): 473 − 485. doi: 10.1007/s13296-015-6016-3

    [22]

    YUEN K V, KUOK S C. Bayesian methods for updating dynamic models [J]. Applied Mechanics Reviews, 2011, 64(1): 010802. doi: 10.1115/1.4004479

    [23] 公茂盛, 谢礼立, 欧进萍. 基于结构强震记录框剪结构自振周期经验公式[J]. 土木工程学报, 2010, 43(12): 35 − 40.

    GONG Maosheng, XIE Lili, OU Jinping. Empirical formula for fundamental period of frame-shear wall structures based on structural strong motion records [J]. China Civil Engineering Journal, 2010, 43(12): 35 − 40. (in Chinese)

    [24] 公茂盛, 孙静, 谢礼立. 抗弯钢框架结构自振周期经验公式研究[J]. 土木工程学报, 2012, 45(增刊1): 268 − 272.

    GONG Maosheng, SUN Jing, XIE Lili. Study on empirical formula for natural period of moment resisting steel frame structures [J]. China Civil Engineering Journal, 2012, 45(Suppl 1): 268 − 272. (in Chinese)

    [25] 陈隽, 宋颖豪, 王泽涛. 建筑基本周期多因素机器学习预测模型[J]. 工程力学, 2024, 41(2): 171 − 179. doi: 10.6052/j.issn.1000-4750.2022.03.0274

    CHEN Jun, SONG Yinghao, WANG Zetao. Multi-factor machine learning prediction model for the natural period of buildings [J]. Engineering Mechanics, 2024, 41(2): 171 − 179. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.03.0274

    [26] 项梦洁, 陈隽. RC框架结构基本自振周期个体间不确定性量化[J]. 工程力学, 2024, 41(5): 87 − 95. doi: 10.6052/j.issn.1000-4750.2022.05.0404

    XIANG Mengjie, CHEN Jun. Quantification of inter-building variability of natural vibration period of RC frame buildings [J]. Engineering Mechanics, 2024, 41(5): 87 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.0404

    [27] 施卫星, 陈希, 曹加良. 多因素型结构基本自振周期预测模型的研究[J]. 工程力学, 2013, 30(3): 146 − 151.

    SHI Weixing, CHEN Xi, CAO Jialiang. Multi-factor predictive models of structural fundamental natural period [J]. Engineering Mechanics, 2013, 30(3): 146 − 151. (in Chinese)

    [28] GB 50009−2001, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2002.

    GB 50009−2001, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2002. (in Chinese)

图(13)  /  表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-23
  • 修回日期:  2024-11-02
  • 网络出版日期:  2024-11-28

目录

    /

    返回文章
    返回