LIMITED MONITORING DATA BASED UPDATING METHOD FOR FUNDAMENTAL PERIOD OF THE BUILDING GROUP MODEL
-
摘要:
通常情况下区域建筑群中仅有数量十分有限的建筑布设结构监测台阵,为充分利用有限监测建筑的监测数据提升建筑群震害模拟的精度,该研究提出了基于贝叶斯参数学习算法的建筑群模型参数更新方法通用流程,该通用流程通过采用有限监测建筑的监测数据更新建筑模型参数经验公式,以实现建筑群中所有建筑的模型参数更新。该研究选择建筑群震害分析模型的关键模型参数,即基本周期,在上述方法通用流程下推导了建筑群模型基本周期更新方法,通过建立虚拟建筑群对该方法进行了参数分析,并采用建筑群实测数据对该方法进行了进一步验证。结果表明:该方法能有效提升建筑群模型基本周期的计算精度;满足最低要求的监测建筑数量占比与经验公式参数初始均值误差、经验公式参数初始变异系数取值以及经验公式误差标准差取值密切相关,建议监测建筑数量占比取值最少为4%。该文研究为基于有限监测建筑监测数据的建筑群模型标定和更新提供了可行方法。
Abstract:Usually, only a very limited number of buildings in a region are equipped with structural monitoring arrays. In order to improve the accuracy of earthquake damage simulation for building groups with limited monitoring data, a framework for updating the model parameters of the building groups based on Bayesian parameter learning algorithm was established. In this framework, the model parameters of all buildings are updated through updating the empirical calculation formula of the model parameters based on the limited monitoring data. In this study, the fundamental period that best represents the dynamic characteristics of the structure was selected, and the updating algorithm for the fundamental period of the building groups was derived under the above framework. A parameter analysis of the updating method for the fundamental period was conducted by using a virtual building group. And the proposed method was further validated by using measured data from real building groups. The results show that this method can effectively improve the accuracy of the estimated fundamental period of the building groups; The proportion of monitoring buildings that meet the minimum requirements is closely related to error of the initial average value of empirical formula parameters, the initial coefficient of variation of empirical formula parameters, and the standard deviation of empirical formula errors. It is recommended that the proportion of monitoring buildings be set at a minimum of 4%. This study provides a feasible method for calibrating and updating building group models based on the data of limited number of monitored buildings.
-
-
表 1 不同高度建筑数量占比
Table 1 Proportion of buildings with different heights
高度/m 30~40 40~50 50~60 60~70 >70 数量占比/(%) 73 15 9 2 1 表 2 不同层数建筑数量占比
Table 2 Proportion of buildings with different number of stories
层数/层 10~11 12~13 14~15 16~17 18~19 >20 数量占比/(%) 57 21 9 6 5 2 -
[1] 林旭川. 城市建筑群地震灾害数值仿真与风险控制[J]. 城市与减灾, 2017(3): 18 − 22. LIN Xuchuan. Earthquake disaster simulations and risk control for city buildings [J]. City and Disaster Reduction, 2017(3): 18 − 22. (in Chinese)
[2] HORI M, ICHIMURA T, OGUNI K. Development of integrated earthquake simulation for estimation of strong ground motion, structural responses and human actions in urban areas [J]. Asian Journal of Civil Engineering, 2006, 7(4): 381 − 392.
[3] LU X Z, GUAN H. 2017. Earthquake disaster simulation of civil infrastructures: From tall buildings to urban areas [M]. Beijing: Science Press, 2017: 351 − 384.
[4] 林旭川, 刘雪艳, 胡仁康, 等. 鲁甸地震宏观震中建筑群震害分析与抗震韧性评估[J]. 地震研究, 2020, 43(3): 449 − 455. doi: 10.3969/j.issn.1000-0666.2020.03.004 LIN Xuchuan, LIU Xueyan, HU Renkang, et al. Regional damage analysis and resilience evaluation of buildings in the epicenter region of 2014 Ludian earthquake [J]. Journal of Seismological Research, 2020, 43(3): 449 − 455. (in Chinese) doi: 10.3969/j.issn.1000-0666.2020.03.004
[5] 潘毅, 张兰林, 林旭川, 张彪. 泸县6.0级地震城市建筑群震害模拟与震害机理分析[J]. 防灾减灾工程学报, 2024, 44(05): 977 − 986. PAN Yi, ZHANG Lanlin, LIN Xuchuan, ZHANG Biao. Simulation and Mechanism Analysis of Seismic Damage to Urban Buildings Groups during the Ms 6.0 Luxian Earthquaks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(05): 977 − 986. (in Chinese)
[6] XU Y J, LU X Z, TIAN Y, et al. Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning [J]. Journal of Earthquake Engineering, 2022, 26(8): 4259 − 4279. doi: 10.1080/13632469.2020.1826371
[7] XU Y J, LU X Z, CETINER B, et al. Real-time regional seismic damage assessment framework based on long short-term memory neural network [J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(4): 504 − 521. doi: 10.1111/mice.12628
[8] CHEN X N, ZHANG L X, LIN X C, et al. A clustering-based analysis method for simulating seismic damage of buildings in large cities [J]. Engineering Structures, 2024, 307: 117860. doi: 10.1016/j.engstruct.2024.117860
[9] CHEN X N, LIN X C, ZHANG L X, et al. Method for rapidly generating urban damage scenarios under non-uniform ground motion input based on matching algorithms and time history analyses [J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107055. doi: 10.1016/j.soildyn.2021.107055
[10] MOTTERSHEAD J E, FRISWELL M I. Model updating in structural dynamics: A survey [J]. Journal of Sound and Vibration, 1993, 167(2): 347 − 375. doi: 10.1006/jsvi.1993.1340
[11] HUANG X H, DYKE S, SUN Z X, et al. Simultaneous identification of stiffness, mass, and damping using an on‐line model updating approach [J]. Structural Control and Health Monitoring, 2016, 24(4): e1892.
[12] WU M L, SMYTH A W. Application of the unscented Kalman filter for real‐time nonlinear structural system identification [J]. Structural Control and Health Monitoring, 2007, 14(7): 971 − 990. doi: 10.1002/stc.186
[13] FRISWELL M I, PENNY J E T. Updating model parameters from frequency domain data via reduced order models [J]. Mechanical Systems and Signal Processing, 1990, 4(5): 377 − 391. doi: 10.1016/0888-3270(90)90064-R
[14] YANG Y B, CHEN Y J. Direct versus iterative model updating methods for mass and stiffness matrices [J]. International Journal of Structural Stability and Dynamics, 2010, 10(2): 165 − 186. doi: 10.1142/S0219455410003518
[15] BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties. I: Bayesian statistical framework [J]. Journal of Engineering Mechanics, 1998, 124(4): 455 − 461. doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)
[16] DAS A, DEBNATH N. A Bayesian model updating with incomplete complex modal data [J]. Mechanical Systems and Signal Processing, 2020, 136: 106524. doi: 10.1016/j.ymssp.2019.106524
[17] CAMPOSTRINI G P, TAFFAREL S, BETTIOL G, et al. A Bayesian approach to rapid seismic vulnerability assessment at urban scale [J]. International Journal of Architectural Heritage, 2018, 12(1): 36 − 46. doi: 10.1080/15583058.2017.1370506
[18] BARTOLI G, BETTI M, MARRA A M, et al. A Bayesian model updating framework for robust seismic fragility analysis of non-isolated historic masonry towers [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2155): 20190024. doi: 10.1098/rsta.2019.0024
[19] 熊琛. 基于时程分析和三维场景可视化的区域建筑震害模拟研究[D]. 北京: 清华大学, 2016. XIONG Chen. Study on the regional building seismic damage simulation based on time-history analysis and 3D scene visualization [D]. Beijing: Tsinghua University, 2016. (in Chinese)
[20] KOCHENDERFER M J, WHEELER T A, WRAY K H. Algorithms for decision making [M]. Cambridge: MIT Press, 2022: 71 − 74.
[21] MUSTAFA S, DEBNATH N, DUTTA A. Bayesian probabilistic approach for model updating and damage detection for a large truss bridge [J]. International Journal of Steel Structures, 2015, 15(2): 473 − 485. doi: 10.1007/s13296-015-6016-3
[22] YUEN K V, KUOK S C. Bayesian methods for updating dynamic models [J]. Applied Mechanics Reviews, 2011, 64(1): 010802. doi: 10.1115/1.4004479
[23] 公茂盛, 谢礼立, 欧进萍. 基于结构强震记录框剪结构自振周期经验公式[J]. 土木工程学报, 2010, 43(12): 35 − 40. GONG Maosheng, XIE Lili, OU Jinping. Empirical formula for fundamental period of frame-shear wall structures based on structural strong motion records [J]. China Civil Engineering Journal, 2010, 43(12): 35 − 40. (in Chinese)
[24] 公茂盛, 孙静, 谢礼立. 抗弯钢框架结构自振周期经验公式研究[J]. 土木工程学报, 2012, 45(增刊1): 268 − 272. GONG Maosheng, SUN Jing, XIE Lili. Study on empirical formula for natural period of moment resisting steel frame structures [J]. China Civil Engineering Journal, 2012, 45(Suppl 1): 268 − 272. (in Chinese)
[25] 陈隽, 宋颖豪, 王泽涛. 建筑基本周期多因素机器学习预测模型[J]. 工程力学, 2024, 41(2): 171 − 179. doi: 10.6052/j.issn.1000-4750.2022.03.0274 CHEN Jun, SONG Yinghao, WANG Zetao. Multi-factor machine learning prediction model for the natural period of buildings [J]. Engineering Mechanics, 2024, 41(2): 171 − 179. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.03.0274
[26] 项梦洁, 陈隽. RC框架结构基本自振周期个体间不确定性量化[J]. 工程力学, 2024, 41(5): 87 − 95. doi: 10.6052/j.issn.1000-4750.2022.05.0404 XIANG Mengjie, CHEN Jun. Quantification of inter-building variability of natural vibration period of RC frame buildings [J]. Engineering Mechanics, 2024, 41(5): 87 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.0404
[27] 施卫星, 陈希, 曹加良. 多因素型结构基本自振周期预测模型的研究[J]. 工程力学, 2013, 30(3): 146 − 151. SHI Weixing, CHEN Xi, CAO Jialiang. Multi-factor predictive models of structural fundamental natural period [J]. Engineering Mechanics, 2013, 30(3): 146 − 151. (in Chinese)
[28] GB 50009−2001, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2002. GB 50009−2001, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2002. (in Chinese)