基于磁链和电压为广义坐标机电耦合系统动力学方程

杨志安

杨志安. 基于磁链和电压为广义坐标机电耦合系统动力学方程[J]. 工程力学, 2012, 29(5): 189-192.
引用本文: 杨志安. 基于磁链和电压为广义坐标机电耦合系统动力学方程[J]. 工程力学, 2012, 29(5): 189-192.
YANG Zhi-an. DYNAMICAL EQUATION OF A ELECTROMECHANICAL COUPLING SYSTEM BASED ON MAGNETIC CHAIN AND VOLTAGE AS GENERALIZED COORDINATES[J]. Engineering Mechanics, 2012, 29(5): 189-192.
Citation: YANG Zhi-an. DYNAMICAL EQUATION OF A ELECTROMECHANICAL COUPLING SYSTEM BASED ON MAGNETIC CHAIN AND VOLTAGE AS GENERALIZED COORDINATES[J]. Engineering Mechanics, 2012, 29(5): 189-192.

基于磁链和电压为广义坐标机电耦合系统动力学方程

基金项目: 国家自然科学基金项目(50975076);河北省自然基金项目(A2009000997)
详细信息
  • 中图分类号: TH-39

DYNAMICAL EQUATION OF A ELECTROMECHANICAL COUPLING SYSTEM BASED ON MAGNETIC CHAIN AND VOLTAGE AS GENERALIZED COORDINATES

More Information
    Corresponding author:

    YANG Zhi-an: 杨志安

  • 摘要: 以磁链和电压为离散机电耦合系统广义坐标,得到系统的动能、势能、电能、磁能及耗散函数。引入机电耦合系统有质动力概念,通过系统的电路方程和功率平衡方程,得到有质动力解析式。引入拉格朗日能量函数,建立以磁链、电压为广义坐标的机电耦合系统动力学方程,此方程适合机电耦合系统电路非线性情况。
    Abstract: Changing magnetic chain and voltage as generalized coordinates of a discrete electromechanical coupling system, kinetic energy, potential energy, electrical energy, magnetic energy and dissipation function are obtained. The concept of the pondermotive force of the electromechanical coupling system is introduced. By means of the circuit equation and power equilibrium equation, the expression of the pondermotive force is derived. The Lagrangian energy function of the electromechanical coupling system is brought in, and the dynamical equation is aquired based on generalized coordinates, magnetic chain and voltage. It suits nonlinear condition of the circuir of the electromechanical coupling system.
  • [1] 1] 杨志安. 机电磁热耦合系统非线性动力学[R]. 天津: 天津大学, 2006: 77-131. Yang Zhian. Nonlinear dynamics of electromechanical theromagnetic coupling system [R]. Tianjin: Tianjin University, 2006: 77-131. (in Chinese)
    [2] 邱家俊. 机电分析动力学[M]. 北京: 科学出版社, 1992: 254-292. Qiu Jiajun. Electromechanical analysis dynamics [M]. Beijing: Science Press, 1992: 254-292. (in Chinese)
    [3] 汤蕴璆. 电机学一机电能量转换[M]. 北京: 机械工业出版社, 1986: 137-141. Tang Yunqiu. Motor-mechanical and electrical energy conversion [M]. Beijing: Mechanical Industry Press, 1986: 137-141. (in Chinese)
    [4] Ali Osksasoglu, Dimitry Vavrir. Interaction of low- and high-frequency oscillations in a nonlinear RLC circuit [J]. Fundamental Theory and Applications, 1994, 1(10): 669-672.
    [5] Younis M I, Nayfeh A H. A study of the nonlinear response of a resonant microbeam to an elastic actuation[J]. Nonlinear Dynamics, 2003, 31: 91-117.  
    [6] Jazer G N. Mathematical modeling and simulation of thermal effects in flexural microcantilever resonator dynamics [J]. Journal of Vibration and Control, 2006, 12(6): 139-163.
    [7] Yang Zhian, Cui Yihui. Analysis on primary resonance of RLC circuit with inductance nonlinearity [C]. Chinese Control and Decision Conference. Yantai, China: IEEE Press, 2008.
    [8] Yang Zhian, Li Wenlan, Qiu Jiajun. Lagrange-Maxwell equation and magnetic saturation parameter resonance of the generator set [J]. Applied Mathematics and Mechanics, 2007, 28(11): 1545-1553.  
    [9] 郑世珍. 大学物理教程[M]. 北京: 高等教育出版社, 2008: 211-213. Zheng Shizhen. Univercity physics course [M]. Beijing: High Education Press, 2008: 211-213. (in Chinese)
    [10] Hutton D V. Applied mechanical vibrations [M]. MCGra-Hillbook Company, 1980: 88-89.
计量
  • 文章访问数:  965
  • HTML全文浏览量:  27
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2012-05-08
  • 刊出日期:  2012-05-24

目录

    /

    返回文章
    返回