Pasternak 地基中土工格室加筋体的受力变形分析

边学成, 宋广, 陈云敏

边学成, 宋广, 陈云敏. Pasternak 地基中土工格室加筋体的受力变形分析[J]. 工程力学, 2012, 29(5): 147-155.
引用本文: 边学成, 宋广, 陈云敏. Pasternak 地基中土工格室加筋体的受力变形分析[J]. 工程力学, 2012, 29(5): 147-155.
BIAN Xue-cheng, SONG Guang, CHEN Yun-min. DEFORMATION BEHAVIORS OF GEOCELL REINFORCEMENT IN PASTERNAK GROUND[J]. Engineering Mechanics, 2012, 29(5): 147-155.
Citation: BIAN Xue-cheng, SONG Guang, CHEN Yun-min. DEFORMATION BEHAVIORS OF GEOCELL REINFORCEMENT IN PASTERNAK GROUND[J]. Engineering Mechanics, 2012, 29(5): 147-155.

Pasternak 地基中土工格室加筋体的受力变形分析

基金项目: 铁道部科技发展计划重点项目(2008G005-D);高等学校博士学科点专项科研基金项目(20070335086);浙江省自然科学基金项目(Y1080317)
详细信息
    作者简介:

    宋 广(1985-),男,河南长葛人,硕士生,从事交通路基沉降控制的研究(E-mail: songguang49@163.com);陈云敏(1962-),男,浙江温岭人,教授,博士,长江学者,从事土动力学和环境土工方面的研究(E-mail: chenyunmin@zju.edu.cn).

  • 中图分类号: U416.1

DEFORMATION BEHAVIORS OF GEOCELL REINFORCEMENT IN PASTERNAK GROUND

More Information
    Corresponding author:

    BIAN Xue-cheng: 边学成

  • 摘要: 为了研究路面荷载作用下土工格室加筋体的受力与变形机理,正确反映土工格室加筋体与地基之间的荷载传递模式,建立了考虑路基填料和地基土体剪切作用的土工格室加筋体简化分析模型。路基填料和地基土层采用双参数的Pasternak模型,克服了传统Winkler 地基模型无法考虑路基填料和地基中应力扩散的缺点。土工格室加筋体简化为埋置于地基中的有限长梁,以考虑其抗弯刚度的影响。基于特征值分解法求解土工格室加筋体变形微分控制方程,得到了准解析的解,并可直接得到路面荷载作用下土工格室加筋体的弯矩和剪力分布。该文模型在土层剪切刚度趋于足够小时,可退化到采用Winkler 地基时的土工加筋体分析模型。计算发现考虑土体的剪切特性对准确分析土工格室加筋体的受力和变形十分重要;同时发现当下卧地基较软弱时,土工格室加筋体的加固作用更加明显。
    Abstract: A simplified analysis model of geocell reinfocement incooperating subbase and subgrade’s shear effects is proposed to investigate the deformation behaviour of geocell reinforcement subject to pavement surface loads and to reveal the load transmission procedure from geocell reinforcement to subgrade. The Pasternak model, instead of the conventional Winkler model, is applied to describe the behavior of subbase layer and subgrade soil to account for stress spreading in these two layers. Geocell reinforcement is simplified as a finite-length beam embedded in ground to consider its bending stiffness. The differential equations governing pavement and geocell reinforcement’s deformations are solved using eigen decomposition technique, and a semi-analytical solution is obtained for geocell reforcement’s bending moment and shear force. The proposed model converges to the geocell reinforced pavement model with Winkler spring support when soil’s shear stiffness is reduced to sufficiently small. Compuation results show that soil’s shear stiffness is essential for accurately evaluating geocell reinforcement’s deformation. In addition, it’s found that geocell reinforcement has better performance when subgrade soil is weak.
  • [1] 包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利水电出版社, 2008. Bao Chenggang. The principle and application of geosynthetics in engineering [M]. Beijing: China Water Power Press, 2008. (in Chinese)
    [2] Tafreshi S N M, Dawson A R. Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement [J]. Geotextiles and Geomembranes, 2010, 28(1): 72-84.  
    [3] 张志国, 刘鼎兴. 土工格室处理的软基沉降的有限长梁解[J]. 甘肃水利水电技术, 2004, 40(2): 136-137. Zhang Zhiguo, Liu Dingxing. Settlement calculation of the soft foundation treated by geocell with finite beam method [J]. Gansu Hydrotechnics and Hydroelectrics, 2004, 40(2): 136-137. (in Chinese)
    [4] 王孝存, 周健. 加筋地基的应用研究进展[J]. 地下空间与工程学报, 2006, 2(2): 320-324. Wang Xiaocun, Zhou Jian. Application and research progress in reinforced foundation [J]. Chinese Journal of Underground Space and Engineering, 2006, 2(2): 320- 324. (in Chinese)
    [5] Shahu J T. Inextensible reinforcement on non-linear elasto-plastic subgrade under oblique pull [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(18): 2067-2081.  
    [6] Maheshwari P, Viladkar M N. A mathematical model for beams on geosynthetic reinforced earth beds under strip loading [J]. Applied Mathematical Modelling, 2009, 33(4): 1803-1814.  
    [7] Fakher A, Jones C. When the bending stiffness of geosynthetic reinforcement is important [J]. Geosynthetics International, 2001, 8(5): 445-460.
    [8] 俞永华, 谢永利, 杨晓华, 等. 土工格室柔性搭板处治的路桥过渡段差异沉降三维数值分析[J]. 中国公路学报, 2007, 20(4): 12-18. Yu Yonghua, Xie Yongli, Yang Xiaohua, et al. Threedimensional numerical analysis of geocell flexible approach slab for treating differential settlement at bridge-subgrade transition section [J]. China Journal of Highway and Transport, 2007, 20(4), 12-18. (in Chinese)
    [9] Zhang L, Zhao M, Zou X, et al. Deformation analysis of geocell reinforcement using Winkler model [J]. Computers and Geotechnics, 2009, 36(6): 977-983.  
    [10] 赵明华, 张玲, 曹文贵, 等. 基于弹性地基梁理论的土工格室加筋体变形分析[J]. 岩土力学, 2009, 30(12): 3695-3699. Zhao Minghua, Zhang Ling, Cao Wengui, et al. Deformation analysis of geocell reinforcement based on theory for beam on elastic foundation [J]. Rock and Soil Mechanics, 2009, 30(12): 3695-3699. (in Chinese)
    [11] 黄义, 何芳社. 弹性地基上的梁、板、壳[M]. 北京: 科学出版社, 2005. Huang Yi, He Fangshe. The theory of beam, plate and shell on elastic foundation [M]. Beijing: Science Press, 2005. (in Chinese)
    [12] 张福海, 俞仲泉. 平面应变条件下土工格室加筋垫层的变形分析[J]. 岩土力学, 2005, 26(增1): 241-243. Zhang Fuhai, Yu Zhongquan. Analysis of deformation of geocell reinforced mat under plane strain condition [J]. Rock and Soil Mechanics, 2005, 26(Suppl 1): 241-243. (in Chinese)
    [13] Tanahashi H. Formulas for an infinitely long Bernoulli- Euler beam on the Pasternak model [J]. Journal of the Japanese Geotechnical Society, 2004, 44(5): 109-118.
    [14] 郭燕平. 土工格室柔性筏基加固浅层软弱地基试验研究[J]. 山西交通科技, 2001, 6(3): 3-8. Guo Yanping. Test research of earthwork flexibility raft foundation strengthening shallow soft subgrade [J]. Shanxi Science & Technology of Communications, 2001, 6(3): 3-8. (in Chinese)
    [15] 唐建中. 双层地基应力扩散的特性研究[J]. 地基处理, 1993, 4(2): 25-31. Tang Jianzhong. On the stress spreading characteristic for double-layered foundation [J]. Ground Improvement, 1993, 4(2): 25-31. (in Chinese)
计量
  • 文章访问数:  1157
  • HTML全文浏览量:  25
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2012-05-08
  • 刊出日期:  2012-05-24

目录

    CHEN Yun-min

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回