结构矩阵分析中的“平衡几何”互伴定理

龙驭球

龙驭球. 结构矩阵分析中的“平衡几何”互伴定理[J]. 工程力学, 2012, 29(5): 1-7.
引用本文: 龙驭球. 结构矩阵分析中的“平衡几何”互伴定理[J]. 工程力学, 2012, 29(5): 1-7.
LONG Yu-qiu. AN ADJOINT THEOREM BETWEEN EQUILIBRIUM MATRIX AND GEOMETRIC MATRIX IN STRUCTURAL ANALYSIS[J]. Engineering Mechanics, 2012, 29(5): 1-7.
Citation: LONG Yu-qiu. AN ADJOINT THEOREM BETWEEN EQUILIBRIUM MATRIX AND GEOMETRIC MATRIX IN STRUCTURAL ANALYSIS[J]. Engineering Mechanics, 2012, 29(5): 1-7.

结构矩阵分析中的“平衡几何”互伴定理

详细信息
  • 中图分类号: TU311.4

AN ADJOINT THEOREM BETWEEN EQUILIBRIUM MATRIX AND GEOMETRIC MATRIX IN STRUCTURAL ANALYSIS

More Information
    Corresponding author:

    LONG Yu-qiu: 龙驭球

  • 摘要: 在结构矩阵分析中,“外力-内力”之间的平衡分析及其平衡矩阵[H],“位移-变形”之间的几何分析及其几何矩阵[G],是两大主题和两个主要矩阵。该文提出并论证平衡矩阵[H]与几何矩阵[G]之间的互伴定理。分四点论述:1) 建立杆件单元e 的平衡矩阵[H]e和几何矩阵[G]e,指出[H]e和[G]e的表示形式不是唯一的,有多种方案可供选择(该文给出方案I 和方案II 两种不同形式);2) 指出[H]e和[G]e可形成多种组合,其中有的是互伴组合(即[H]e与[G]e互为转置矩阵),有的不是互伴组合;3) 建立“平衡-几何”互伴定理:如果所选取的单元内力向量{FE}e和单元变形向量{Λ}e 互为共轭向量,则其平衡矩阵[H]e 和几何矩阵[G]e 必为互伴矩阵;4) 应用虚功原理可导出“平衡-几何”互伴定理。虽然两者的表述形式不同,但两者是互通的。
    Abstract: In structural matrix analysis, the equilibrium matrix [H] and the geometric matrix [G] are two basic matrices. In this paper, an adjoint theorem between the equilibrium matrix [H] and the geometric matrix [G] is presented and proved. The discussion is divided into four parts: 1) The equilibrium matrix [H]e and the geometric matrix [G]e for the element e are established. There exist several different expressions for [H]e and for [G]e. In this paper two different expressions (version I and version II) are given for examples. 2) The relationship between [H]e and [G]e can be classified into two different cases: i) [H]e and [G]e are adjoint matrices ( [H]eT =[G]e); ii) [H]e and [G]e are not adjoint matrices ( [H]eT ≠[G]e). 3) An adjoint theorem between equilibrium matrix [H]e and geometric matrix [G]e is established. If the element internal force vector [FE]e and the element deformation vector [Λ]e are conjugate vectors, then the equilibrium matrix [H]e and the geometric matrix [G]e are adjoint matrices. 4) The adjoint theorem between [H]e and [G]e is proved by the principle of virtual work.
  • [1] 龙驭球, 包世华, 匡文起, 等. 结构力学I——基本教程[M]. 第2 版. 北京: 高等教育出版社, 2006, 第9 章. Long Yuqiu, Bao Shihua, Kuang Wenqi, et al. Structural mechanics I-Fundamental course [M]. 2nd ed. Beijing: Higher Education Press, 2006, Chapter 9. (in Chinese)
    [2] 龙驭球, 包世华, 匡文起, 等. 结构力学II——专题教程[M]. 第2 版. 北京: 高等教育出版社, 2006, 第13 章. Long Yuqiu, Bao Shihua, Kuang Wenqi, et al. Structural mechanics II-Advanced course [M]. 2nd ed. Beijing: Higher Education Press, 2006, Chapter 13. (in Chinese)
    [3] 袁驷. 程序结构力学[M]. 第2 版. 北京: 高等教育出版社, 2008, 第4 章-第6 章. Yuan Si. Programming structural mechanics [M]. 2nd ed. Beijing: Higher Education Press, 2008, Chapter 4-6. (in Chinese)
    [4] Zienkiewicz O C, Taylor R L. The Finite Element Method [M]. Vol. I. Oxford: Butterworth Heinemann, 2000.
    [5] 龙驭球, 龙志飞, 岑松. 新型有限元论[M]. 北京: 清华大学出版社, 2003. Long Yuqiu, Long Zhifei, Cen Song. High performance finite element method [M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [6] Long Yuqiu, Cen Song, Long Zhifei. Advanced finite element method in structural engineering [M]. Springer, Beijing: Tsinghua University Press, 2009.
    [7] 龙驭球, 刘光栋, 何放龙, 等. 能量原理新论[M]. 北京: 中国建筑工业出版社, 2007, 第8 章. Long Yuqiu, Liu Guangdong, He Fanglong, et al. New monograph of variational principles [M]. Beijing: China Architecture & Building Press, 2007, Chapter 8. (in Chinese)
    [8] Wang C K. Intermediate structural analysis [M]. New York: Mc-Graw-Hill, 1985.
    [9] Wang C K. Structural analysis on microcomputers [M]. Oxford: Macmillan, 1986.
    [10] Wang C K, Salmon C G. Introductory structural analysis[M]. London: Prentice-Hall, 1984.
    [11] 龙驭球, 包世华, 匡文起, 等. 结构力学II——专题教程[M]. 第3 版. 北京: 高等教育出版社, 2012, 第14 章. Long Yuqiu, Bao Shihua, Kuang Wenqi, et al. Structural mechanics II-Advanced course [M]. 3rd ed. Beijing: Higher Education Press, 2012, Chapter 14. (in Chinese)
计量
  • 文章访问数:  1171
  • HTML全文浏览量:  16
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2012-05-08
  • 刊出日期:  2012-05-24

目录

    Corresponding author: LONG Yu-qiu

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回