有限元线法求解非线性模型问题——Ⅲ.薄膜的固有振动

张亿果, 袁驷

张亿果, 袁驷. 有限元线法求解非线性模型问题——Ⅲ.薄膜的固有振动[J]. 工程力学, 1993, 10(3): 1-8.
引用本文: 张亿果, 袁驷. 有限元线法求解非线性模型问题——Ⅲ.薄膜的固有振动[J]. 工程力学, 1993, 10(3): 1-8.
Zhang Yiguo, Yuan Si. ANALYSIS OF NONLINEAR MODEL PROBLEMS BY THE FINITE ELEMENT METHOD OF LINES—Ⅲ. FREE VIBRATION OF MEMBRANES[J]. Engineering Mechanics, 1993, 10(3): 1-8.
Citation: Zhang Yiguo, Yuan Si. ANALYSIS OF NONLINEAR MODEL PROBLEMS BY THE FINITE ELEMENT METHOD OF LINES—Ⅲ. FREE VIBRATION OF MEMBRANES[J]. Engineering Mechanics, 1993, 10(3): 1-8.

有限元线法求解非线性模型问题——Ⅲ.薄膜的固有振动

ANALYSIS OF NONLINEAR MODEL PROBLEMS BY THE FINITE ELEMENT METHOD OF LINES—Ⅲ. FREE VIBRATION OF MEMBRANES

  • 摘要: 本文是有限元线法(FEMOL)求解非线性模型问题的系列工作之三,对薄膜的固有振动这一特征值模型问题作了分析求解。文中,首先用FEMOL对特征值问题的泛函进行半离散,得到相应的常微分方程(ODE)特性值问题;然后,利用若干ODE变换技巧将问题转换成标准的非线性ODE问题;最后,采用一个新近研究出的有效算法,对各阶特征对进行了方便有效、精确可靠的求解。文中出示的算例展示了该法的功效。
    Abstract: As the third paper in this series of nonlinear applications of the finite element method of lines (FEMOL), the present paper applies this method to eigenvalue problems by presenting a FEMOL analysis of the free vibration of various membranes. Firstly, the vibration problem is discretized into eigenvalue problem in ODEs. Then using a number of ODE conversion techniques, the eigenvalue problem is further transformedinto a standard nonlinear ODE problem, which is solved by a recently -developed ODE eigen-solver. Numerical examples are given to show the present approach.
计量
  • 文章访问数:  706
  • HTML全文浏览量:  24
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  1992-11-30
  • 修回日期:  1899-12-31
  • 刊出日期:  1993-07-14

目录

    Yuan Si

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回