广义多体系统动力学的速度变换矩阵综合法

THE VELOCITY TRANSFORM MATRIX SYNTHESIS METHOD IN DYNAMICS OF GENERALIZED MULTIBODY SYSTEMS

  • 摘要: 文中提出了广义多体系统和速度变换矩阵的概念,提出了一种新的加速度变换关系,以带不定乘子的拉格朗日方程为基础推导得到了求解复杂系统动力学问题的一种新方法,即广义多体系统的速度变换矩阵综合法。利用该方法,可根据无耦合广义体的动力学参数和系统的速度变换矩阵直接获得广义多体系统的动力学方程,其中不含拉格朗日不定乘子和约束反力,且方程中逆矩阵求解的维数等于系统的自由度数,因而有利于提高计算效率。该方法主要面向计算机实现程式化的算法,系统的动力方程可以由计算机自动完成运算,从而避免了繁琐的解析推导工作。

     

    Abstract: The concepts of generalized multibody systems and velocity transform matrix and a new form of acceleration transform are presented in the paper. Based on the Lagrange multiplier method, a new method for dynamic analysis of complicated systems is developed, that is, the velocity transform matrix synthesis method for generalized multibody systems. The resulting dynamic equations do not include the Lagrange multipliers and constraint forces. With the aid of the dynamic matrixes of each uncoupled generalized body and the velocity transform matrix for a generalized multibody system, the dynamic equations of the coupled system are obtained by matrix operations. The method is computer-oriented and easy to be coded. An example is provided to illustrate the proposed method.

     

/

返回文章
返回