基于参数二次规划与精细积分方法的动力弹塑性问题分析

ANALYSIS OF DYNAMIC ELASTOPLASTC PROBLEMS BASED ON PARAMETRIC QUADRATIC PROGRAMMING AND EXACT INTEGRATION

  • 摘要: 给出了将参数二次规划方法与精细积分方法相结合进行结构弹塑性动力响应分析的一条新途径。基于参变量变分原理与有限元参数二次规划方法建立了动力弹塑性问题的求解方程,方法对于关联与非关联问题的求解在算法上是完全一致的。对于动力非线性方程求解则进一步采用了被线性问题分析所广泛采用的精细积分方法,推导了方法在动力弹塑性问题求解上的算法列式。所给出的数值算例在验证本文理论与算法的同时,进一步证实了精细积分方法在动力学分析中所具有的各种良好性态。

     

    Abstract: A new algorithm for dynamic elastoplastic analysis is put forward on the basis of parametric quadratic programming and exact integration. The equations of dynamic elastoplastic problems are derived from the parametric variational principle and parametric quadratic programming, being valid for both associated and non-associated plastic constitutive models in finite element analysis. Exact integration method, which has been widely used in linear problems, is adopted for the solution of dynamic nonlinear equations. A numerical example is provided to demonstrate the correctness and the advantage of the proposed theory and algorithm.

     

/

返回文章
返回