精细直接积分法的积分方法选择

储德文, 王元丰

储德文, 王元丰. 精细直接积分法的积分方法选择[J]. 工程力学, 2002, 19(6): 115-119.
引用本文: 储德文, 王元丰. 精细直接积分法的积分方法选择[J]. 工程力学, 2002, 19(6): 115-119.
CHU De-wen, WANG Yuan-feng. INTEGRATION FORMULA SELECTION FOR PRECISE DIRECT INTEGRATION METHOD[J]. Engineering Mechanics, 2002, 19(6): 115-119.
Citation: CHU De-wen, WANG Yuan-feng. INTEGRATION FORMULA SELECTION FOR PRECISE DIRECT INTEGRATION METHOD[J]. Engineering Mechanics, 2002, 19(6): 115-119.

精细直接积分法的积分方法选择

详细信息
  • 中图分类号: O332

INTEGRATION FORMULA SELECTION FOR PRECISE DIRECT INTEGRATION METHOD

  • 摘要: 讨论了精细直接积分法中积分方法选择问题。通过理论推导和数值试验,指出为保持精细算法的高精度,应根据荷载的性质选择合适的积分方法,并得出激励为多项式形式时应选择代数精度高的积分方法的结论,指出科茨积分、高斯积分是保持精细算法高精度的较好积分方法。
    Abstract: The selection of numerical integration method of precise direct integration is discussed in this paper. Theoretical analysis and numerical results show that the feasibility of numerical integration method depends on the characteristics of loads. It is suggested that a numerical integration method of high algebraic accuracy be used if the load can be expressed in a polynomial form. It is shown that Cotes formula and Gauss formula are two effective integration methods for precise algorithm.
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  23
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-04-26
  • 修回日期:  2001-11-08
  • 刊出日期:  2002-11-14

目录

    /

    返回文章
    返回