多孔介质的一种流-固耦合动态边界理论
A DYNAMIC BOUNDARY THEORY FOR POROUS MEDIUM WITH FLUID-SOLID COUPLING
-
摘要: 基于Biot理论,推导了考虑渗流作用的可变形多孔介质流-固耦合问题的基本方程,建立了本问题的渗流模型,给出了所考虑问题的流体动力弥散分布概率及系数表达式,进一步建立了多孔介质中微压液体位移场模型,讨论了流体动力弥散因素对多孔介质边界的影响,建立了描述多孔介质的动态边界方程,并分别对所建立的四种边界模拟了动态结果及算例。Abstract: The primary equations for deformable porous media, including the effects of fluid-solid coupling and infiltration, are derived on the basis of Biot theory. The hydrodynamic dispersion distribution probability and coefficient expressions are presented. The displacement field for the liquid in the porous medium is given. The hydrodynamic dispersion effect on the boundary of porous media is discussed. The moving boundary equation for porous media is established and four types of boundary conditions are studied.