基于Cosserat理论的应变梯度非协调数值研究
INCOMPATIBLE FINITE ELEMENT FOR MATERIALS WITH STRAIN GRADIENT EFFECTS
-
摘要: 依据Cosserat连续介质理论下非协调离散体系的能量相容性,导出了非协调位移的一个合理约束条件。根据这个条件构造了一个应变梯度平面4节点非协调单元。计算结果表明,该单元对可压缩和不可压缩状态的Cosserat类型的应变梯度材料均给出合理的数值结果,再现了材料的应变梯度效应。Abstract: According to Cosserat elasticity theory, energy consistency conditions are presented for discrete system with incompatible element. Rational constrained conditions for the incompatible displacement are derived from the energy consistency conditions. A 4-node plane strain incompatible element is developed. The element can simulate the strain gradient effects of both compressible and nearly incompressible Cosserat materials.