Abstract:
The circular tunnel is a common structure in civil engineering. Engineers are always concerned about the stress field and displacement field of the liner and its surrounding rock. But the formulas of stresses, displacements and plastic range of the axisymmetric circular tunnel in the infinite uniform medium have been derived under the assumption that the first principal stress in Mohr-Coulomb yield function is always the normal uniform force acting on the inner face of the tunnel. The assumption is inadequate. In this paper, the formulas calculating yield range and stresses are deduced based on the proper choice of the first principal stress used in Mohr-Coulomb yield condition according to loads and in situ stresses. The concept of first and second critical pressure is introduced, which relate to the diameter of the circle tunnel, thickness of the liner, the elastic parameters and shear strength of the liner and its surrounding rock. The of applicability formulas is gained based on the critical pressures. An example is analyzed, and the yield range versus the inner pressure and stress distribution are presented. Results are compared to those based on the traditional method and significant disparity is observed. The greater of inner pressure, the greater of the difference.