Rayleigh-Bénard对流的多分形及其谱特征

STRUCTURE CHARACTERS OF RAYLEIGH-BÉNARD CONVECTION AND ITS MULTIFRACTAL SPECTRUM

  • 摘要: 首先简单介绍了分形和多分形的概念,以及用WTMM方法计算多分形谱的步骤,然后分别从理论上和WTMM方法计算了标准2-6-2分Cantor集的多分形谱图,得出了多分形谱的一般物理意义。在此基础上,利用基于小波的WTMM方法计算了Rayleigh-Bénard对流多分形谱及其随流场结构变化的特征。研究结果表明:基于小波的WTMM方法研究多分形谱是可行的;Rayleigh-Bénard对流温度信号的多分形谱结构在由流场的中心向侧壁边缘的过渡中,其多分形谱态也是渐变的。

     

    Abstract: This paper introduces fractal and multifractal theory, as well as the application of the WTMM method to compute the multifractal spectrum. Then the multifractal spectrum of the 2-6-2 Cantor Set is analyzed theoretically and by the WTMM method, so that the physical significance of the multifractal spectrum is obtained. The temperature signals of Rayleigh-Bénard convection is analyzed using the WTMM method. It is found that the WTMM is a feasible method to analyze the multifractal spectrum. The multifractal structure of Rayleigh-Bénard convection change gradually from center to edge.

     

/

返回文章
返回