四边形单元第三类面积坐标系统

THE THIRD VERSION OF AREA COORDINATE SYSTEMS FOR QUADRILATERAL ELEMENTS

  • 摘要: 四边形单元面积坐标系统的两种型式(QAC-I和QAC-II)已被建立。QAC-I含四个坐标分量(L1, L2, L3, L4),其中只有两个是独立分量。QAC-II只含两个独立的坐标分量(Z1, Z2)。这些面积坐标系统为建立对网格畸变不敏感的新型四边形单元提供理论基础。该文系统地建立了具有两个坐标分量(T1, T2)的四边形单元第三类面积坐标系统(QAC-III)。这个新的QAC-III系统不仅保留了QAC-I和QAC-II的主要优点,而且具有其他一些优异特性:1) 它是自然坐标;2) 它与直角坐标系统保持线性关系;3) 它只含两个坐标分量;4) 由它导出的形函数具有比较简洁的形式;5) 它可以直接地推广应用于曲边单元;6) 采用三类系统I、系统II、系统III的混合形式常可以导出优化的结果。

     

    Abstract: Two versions of area coordinate systems for quadrilateral elements (QAC-I and QAC-II) have been developed. The QAC-I contains four coordinate components (L1, L2, L3, L4), among which only two are independent. The QAC-II contains only two independent coordinate components (Z1, Z2). These area coordinate systems provide the theoretical bases for the construction of new quadrilateral element models insensitive to mesh distortion. In this paper, the third version of area coordinate systems for quadrilateral elements (QAC-III) with two coordinate components (T1, T2) is systematically established. This new QAC-III not only retains the most important advantages of both QAC-I and QAC-II, but also possesses other distinguished characters: 1) it is a natural coordinate system; 2) it keeps simple linear relationship with the Cartesian coordinate system; 3) it contains only two coordinate components; 4) the shape function developed has a simpler form; 5) it can be directly applied to curved quadrilateral elements; 6) three version I , II and III can be used in a mixed form to give the optimal results.

     

/

返回文章
返回