车桥耦合系统非平稳随机振动分析的虚拟激励-精细积分法

PEM-PIM SCHEME FOR NON-STATIONARY RANDOM VIBRATION ANALYSIS OF VEHICLE-BRIDGE SYSTEMS

  • 摘要: 提出了考虑轨道高低不平顺时进行车桥耦合系统垂向非平稳随机振动分析的新方法。车辆采用具有两系悬挂10个自由度的四轮模型,桥梁采用Bernoulli-Euler梁单元有限元模型。将轨道高低不平顺假设为均匀调制演变随机过程,并考虑各车轮所受轨道随机激励之间的相位差,采用虚拟激励法(PEM)将轨道不平度精确地转化为一系列垂向简谐不平度的叠加,大大简化了运动方程的求解。在此基础上采用能够更真实地模拟车辆作用力在时间域和空间域上连续变化的精细积分法(PIM)来进行数值积分计算。数值算例中,将该方法与Monte Carlo方法进行了比较,并分析了轨道不平顺对于系统随机响应的影响。数值计算表明:发展的虚拟激励-精细积分法(PEM-PIM)能够高效精确地进行车桥耦合系统的垂向非平稳随机振动分析;轨道不平度级别对系统随机振动影响显著,且其一阶、二阶导数项对系统加速度随机响应的影响应予以考虑。

     

    Abstract: A new method for a vertical non-stationary random vibration analysis of vehicle-bridge systems subjected to track irregularity excitations is proposed. The vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension systems possessing 10 degrees of freedom. The bridge is modeled as an elastic Bernoulli-Euler beam, and the track irregularity is assumed to be a uniformly modulated evolutionary random process with the phase-lags between the wheels taken into account. Pseudo-Excitation Method (PEM) is applied to transform the random surface roughness of the track into the superposition of a series of deterministic pseudo harmonic surface unevenness and thus simplifies the solution of the non-stationary random vibration equations considerably. Meanwhile the Precise Integration Method (PIM) is developed to simulate the continuous varying of the vehicle loads both in the time and space domains in the numerical integration process. Numerical examples are given and the influences of the track irregularity on the system random responses are discussed. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method.

     

/

返回文章
返回