平面K型主圆支方钢管节点力学性能数值分析

NUMERICAL SIMULATION AND EXPERIMENTAL VALIDATION OF MECHANICAL PROPERTIES OF UNSTIFFENED K-JOINTS WITH CIRCULAR CHORD AND SQUARE BRACES

  • 摘要: 以平面K型主圆支方钢管节点的试验数据为基础,建立有限元参数分析模型,进行了非线性有限元参数分析。研究揭示了节点受力全过程,破坏模式以及分布规律。重点考察了支管边长与主管直径比值β、主管的径厚比γ和支管与主管的壁厚比τ对节点极限承载力的影响。有限元参数分析结果表明:主管的径厚比γ和支管与主管的壁厚比τ对节点极限承载力影响较大,而支管边长与主管直径比值β影响较小;γ和τ值均比较小的节点破坏时支管达到杆件极限承载力,说明节点效率大于1,其它几何参数的节点破坏时支管并没有达到杆件极限承载力即节点效率小于1。在国际焊接协会中的平面K型圆钢管节点极限承载力计算公式的基础上,应用多元线性回归方法拟合出平面K型主圆支方钢管节点的承载力计算公式;通过公式本身的回归校验和试验结果以及有限元数据的统计分析,证明该文建立的该类节点极限承载力计算公式具有较高精度。

     

    Abstract: A finite element model simulating the behavior of un-stiffened K-joints with circular chord and square braces was established. Numerical simulation reveals failure process and propagation of plasticity of joints and failure modes. The effect of diameter ratio of branch to chord β, ratio of chord radius to thickness γ, and thickness ratio of branch to chord τ on ultimate capacity of the joints was also studied. Parametric analysis indicates that γ and τ have large effect on ultimate capacity of joints compared with β. Joints with small γ and small τ yield completely. Based on the design equation of circular hollow section K-joints by International Institute of Welding, a formula predicting the ultimate capacity of unstiffened K-joints with circular chord and square braces was proposed by applying multivariate regression analysis. Results calculated using the proposed design equations agree well with experimental results and finite element analysis results, so the design equation of unstiffened K-joints with circular chord and square braces was validated.

     

/

返回文章
返回