Abstract:
Based on the biaxial constitutive model of the modified compression field theory (MCFT) for concrete, a new distributed shell element model for nonlinear analysis of reinforced concrete (RC) shear-walls is developed by the combination of the membrane element with drilling freedoms, the thin-thick plate element and the beam element. In this model, the in-plane and the out-of-plane behaviors of the reinforced concrete wall are simulated by the generalized conforming 4-node quadrilateral membrane element with drilling freedoms and locking-free thin-thick plate bending element respectively, which were both proposed by Long Yu-Qiu and his co-workers; and some fringe structural components of the wall are modeled by the fiber beam element. In order to validate the present model, some experimental data of the RC shear wall specimens are employed for comparison. Numerical results show that, the new distributed shell element model can well predict not only the ultimate load capacity of the RC shear walls simultaneously subjected to bending, shearing and compression, but also the coupled deformation caused by nonlinear bending and shearing. It is also demonstrated that the proposed model, which exhibits high accuracy and efficiency, is quite suitable for the nonlinear dynamic response analysis of the RC shear walls in high-rise buildings under earthquake loading.