再生混凝土中高剪力墙的抗震性能研究

STUDY ON ASEISMIC BEHAVIOR OF MID-RISE RECYCLED AGGREGATE CONCRETE SHEAR WALL

  • 摘要: 为了研究不同的再生细骨料掺量、配筋率、轴压比剪力墙的抗震性能,该文进行了7个剪跨比为1.5的中高剪力墙低周反复荷载试验研究。在试验的基础上,分析了各剪力墙的承载力、延性、刚度、滞回特性、耗能及破坏特征。研究表明:再生细骨料掺量的增加,使再生混凝土中高剪力墙的抗震性能有所降低;配筋率的提高,使再生混凝土中高剪力墙的承载力、延性、耗能能力有所提高;轴压比的提高,使再生混凝土剪力墙的承载力提高,弹塑性变形能力降低。在一定条件下,再生混凝土可用于一些剪力墙结构工程。

     

    Abstract: In order to investigate the aseismic performance of the mid-rise recycled concrete shear wall with the different percent of fine aggregate replacement, reinforcement ratio and axial compression ratio, a low-frequency quasi-static cyclic loading experimental study on seven mid-rise shear walls with a shear-span ratio of 1.5 was carried out. Based upon the experimental study, the load-carrying capacity, ductility, stiffness, hysteretic behavior, energy dissipation and failure phenomena of each shear wall were analyzed. The experiments indicate that the more of the fine aggregate replacement, the poorer the aseismic performance of a recycled concrete shear wall, and the aseismic performance of a recycled aggregate concrete shear wall could be greatly improved by increasing the reinforcement ratio. With the increasing of the axial force ratio, the load-carrying capacity of the shear wall is increased but the ductility is decreased. At some conditions, the recycled aggregate concrete shear wall is able to satisfy the structure aseismic design requirement.

     

/

返回文章
返回