RELIABILITY ANALYSIS OF CYLINDRICAL SHELL STRUCTURES BASED ON BPNN OPTIMIZED BY GENETIC ALGORITHM
-
摘要:
针对水下爆炸载荷作用下的圆柱结构失效概率分析问题,提出基于遗传算法优化的BP神经网络和Monte Carlo相结合的方法建立代理模型,采用混合学习函数,寻找新训练点进行模型更新;通过数值算例验证算法的计算效率和精度,实现对水下爆炸载荷作用下圆柱壳结构的高效率高精度分析。结果表明:基于遗传算法优化的BP神经网络结合蒙特卡洛法可以明显提高计算效率,可应用于圆柱壳结构在水下爆炸载荷作用下的可靠性分析,研究结果对于结构的风险评估以及安全设计具有参考意义。
Abstract:Aiming at the failure probability analysis of cylindrical structures under underwater explosion load, a surrogate model was established by combining BPNN optimized by genetic algorithm and Monte Carlo Simulation, and hybrid learning function was adopted to find the new training point for model updating. The calculation efficiency and accuracy of the algorithm were verified by numerical examples, and the high-efficiency and high-precision analysis of cylindrical shell structures under underwater explosion load was realized. The results show that the BPNN optimized based on genetic algorithm combined with Monte Carlo Simulation method can significantly improve the computational efficiency, and can be applied to the reliability analysis of cylindrical shell structures under underwater explosion load. The research results have reference significance for the risk assessment and safety-based design of structures.
-
-
表 1 不同算法计算结果对比
Table 1 Comparison of calculation results of different algorithms
半径 方法 调用次数/训练样本量 失效概率 c=3 MCS[24] 1.2×105 3.35×10−3 AK-MCS[24] 10+85(105) 3.52×10−3 Meta-IS-AK[24] 48+600(—) 3.54×10−3 GA-BP-MCS 50+101(50 000) 3.50×10−3 c=4 MCS[24] 4.60×106 8.68×10−5 AK-MCS[24] 10+106(106) 8.79×10−5 Meta-IS-AK[24] 64+600(—) 8.60×10−5 GA-BP-MCS 50+47(33 000) 8.30×10−5 注: 括号内数字表示样本池的样本数量;“—”表示无样本池。 -
[1] 魏志翔, 李红, 宋亚楠, 等. 基于蒙特卡罗法的大跨钢管混凝土拱桥结构可靠度分析[J]. 武汉理工大学学报, 2020, 42(12): 21 − 26. WEI Zhixiang, LI Hong, SONG Yanan, et al. Reliability analysis of long-span concrete-filled steel tube arch bridge based on Monte-Carlo method [J]. Journal of Wuhan University of Technology, 2020, 42(12): 21 − 26. (in Chinese)
[2] 陆征然, 郭超, 张茂胜, 等. 基于随机有限元的模板支撑体系井字架结构可靠性研究[J]. 大连理工大学学报, 2018, 58(1): 79 − 85. doi: 10.7511/dllgxb201801012 LU Zhengran, GUO Chao, ZHANG Maosheng, et al. Reliability study of derrick frame in formwork support system based on stochastic finite elements [J]. Journal of Dalian University of Technology, 2018, 58(1): 79 − 85. (in Chinese) doi: 10.7511/dllgxb201801012
[3] CAI B, HAO L Y, FU F. Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns [J]. Advances in Concrete Construction, 2020, 10(4): 289 − 299.
[4] 丁心香, 李帅. 基于响应面优化的边坡三维可靠性评估[J]. 公路, 2022, 67(3): 17 − 25. DING Xinxiang, LI Shuai. Three-dimensional reliability evaluation of slope project based on optimized response surface method [J]. Highway, 2022, 67(3): 17 − 25. (in Chinese)
[5] 陈绍军, 张强, 杨钧杰. 基于响应面法的大跨度悬索桥可靠度分析研究[J]. 工程建设与设计, 2021(19): 71 − 74. CHEN Shaojun, ZHANG Qiang, YANG Junjie. Reliability analysis of long-span suspension bridge using response surface method [J]. Construction & Design for Project, 2021(19): 71 − 74. (in Chinese)
[6] ZHOU D, PAN E S, ZHANG Y M. Fractional polynomial function in stochastic response surface method for reliability analysis [J]. Journal of Mechanical Science and Technology, 2021, 35(1): 121 − 131. doi: 10.1007/s12206-020-1211-3
[7] DENG J. Structural reliability analysis for implicit performance function using radial basis function network [J]. International Journal of Solids and Structures, 2006, 43(11/12): 3255 − 3291.
[8] 丁雅杰, 王佐才, 辛宇, 等. 基于贝叶斯理论的非线性结构模型修正及其动力可靠度分析[J]. 工程力学, 2022, 39(12): 13 − 22, 59. doi: 10.6052/j.issn.1000-4750.2021.07.0556 DING Yajie, WANG Zuocai, XIN Yu, et al. Bayesian-based nonlinear model updating and dynamic reliability analysis [J]. Engineering Mechanics, 2022, 39(12): 13 − 22, 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0556
[9] 金聪鹤, 钱永久, 徐望喜, 等. 考虑抗力非平稳劣化和荷载相关性的桥梁可靠性分析[J]. 工程力学, 2024, 41(2): 202 − 212. doi: 10.6052/j.issn.1000-4750.2022.04.0283 JIN Conghe, QIAN Yongjiu, XU Wangxi, et al. Bridge reliability analysis considering non-stationary degradation of resistance and load dependency [J]. Engineering Mechanics, 2024, 41(2): 202 − 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.04.0283
[10] 李正良, 王成, 王涛, 等. 基于主动学习Kriging模型的直立锁缝屋面系统抗风揭可靠度分析[J]. 工程力学, 2022, 39(10): 111 − 119. doi: 10.6052/j.issn.1000-4750.2021.06.0430 LI Zhengliang, WANG Cheng, WANG Tao, et al. Reliability analysis of wind-resistance of standing seam roof system based on active learning Kriging model [J]. Engineering Mechanics, 2022, 39(10): 111 − 119. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0430
[11] ZHANG Y M, ZHANG L, ZHENG J X, et al. Neural network for structural stress concentration factors in reliability-based optimization [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2006, 220(3): 217 − 224. doi: 10.1243/09544100G00505
[12] FAN X N, WANG P F, HAO F F. Reliability-based design optimization of crane bridges using Kriging-based surrogate models [J]. Structural and Multidisciplinary Optimization, 2019, 59(3): 993 − 1005. doi: 10.1007/s00158-018-2183-0
[13] 赵维涛, 吴广, 祁武超. 基于多重子域代理模型的结构可靠性分析[J]. 计算力学学报, 2019, 36(2): 160 − 165. ZHAO Weitao, WU Guang, QI Wuchao. Structural reliability analysis based on a multiple sub-region surrogate model [J]. Chinese Journal of Computational Mechanics, 2019, 36(2): 160 − 165. (in Chinese)
[14] SUN Z L, WANG J, LI R, et al. LIF: A new Kriging based learning function and its application to structural reliability analysis [J]. Reliability Engineering & System Safety, 2017, 157: 152 − 165.
[15] ZHANG X F, WANG L, SØRENSEN J D. REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis [J]. Reliability Engineering & System Safety, 2019, 185: 440 − 454.
[16] LV Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering [J]. Computers & Mathematics with Applications, 2015, 70(5): 1182 − 1197.
[17] GAO L H, XU G N, YANG P. Important sampling for structural reliability based on radial basis function neural network [J]. Advanced Materials Research, 2011, 291/292/293/294: 2189 – 2194.
[18] SHA L R, YANG Y. Structural reliability optimization with Fourier orthogonal neural network method [J]. Advanced Materials Research, 2013, 834/835/836: 1907 − 1910.
[19] DAI H Z, ZHAO W, WANG W, et al. An improved radial basis function network for structural reliability analysis [J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2151 − 2159. doi: 10.1007/s12206-011-0704-5
[20] 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9 − 18. doi: 10.3901/JME.2019.07.009 HU Niaoqing, CHEN Huipeng, CHENG Zhe, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks [J]. Journal of Mechanical Engineering, 2019, 55(7): 9 − 18. (in Chinese) doi: 10.3901/JME.2019.07.009
[21] XIAO N C, ZUO M J, ZHOU C N. A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis [J]. Reliability Engineering & System Safety, 2018, 169: 330 − 338.
[22] KLEIJNEN J P C, VAN BEERS W C M. Application-driven sequential designs for simulation experiments: Kriging metamodelling [J]. Journal of the Operational Research Society, 2004, 55(8): 876 − 883. doi: 10.1057/palgrave.jors.2601747
[23] 王攀, 辛富康, 邓亚权, 等. 基于自适应神经网络的多模式小失效概率分析方法[J]. 机械工程学报, 2022, 58(23): 39 − 50. doi: 10.3901/JME.2022.23.039 WANG Pan, XIN Fukang, DENG Yaquan, et al. Adaptive neural network based approach for the analysis of small failure probability with multiple modes [J]. Journal of Mechanical Engineering, 2022, 58(23): 39 − 50. (in Chinese) doi: 10.3901/JME.2022.23.039
[24] DUBOURG V, SUDRET B, DEHEEGER F. Metamodel-based importance sampling for structural reliability analysis [J]. Probabilistic Engineering Mechanics, 2013, 33: 47 − 57. doi: 10.1016/j.probengmech.2013.02.002
[25] 冯麟涵. 舰船系统抗冲击性能全局优化方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. FENG Linhan. Reseach on global optimum design method for shock resistance of ship systems [D]. Harbin: Harbin Engineering University, 2009. (in Chinese)