Loading [MathJax]/jax/output/SVG/jax.js

一类考虑翘曲畸变的空间梁单元位移模式

张尧, 董军, 李国华, 王秀芳

张尧, 董军, 李国华, 王秀芳. 一类考虑翘曲畸变的空间梁单元位移模式[J]. 工程力学, 2025, 42(S): 9-15. DOI: 10.6052/j.issn.1000-4750.2024.02.S021
引用本文: 张尧, 董军, 李国华, 王秀芳. 一类考虑翘曲畸变的空间梁单元位移模式[J]. 工程力学, 2025, 42(S): 9-15. DOI: 10.6052/j.issn.1000-4750.2024.02.S021
ZHANG Yao, DONG Jun, LI Guo-hua, WANG Xiu-fang. A KIND OF DISPLACEMENT MODE OF SPATIAL BEAM ELEMENT CONSIDERING THE EFFECT OF WARPING AND DISTORTION[J]. Engineering Mechanics, 2025, 42(S): 9-15. DOI: 10.6052/j.issn.1000-4750.2024.02.S021
Citation: ZHANG Yao, DONG Jun, LI Guo-hua, WANG Xiu-fang. A KIND OF DISPLACEMENT MODE OF SPATIAL BEAM ELEMENT CONSIDERING THE EFFECT OF WARPING AND DISTORTION[J]. Engineering Mechanics, 2025, 42(S): 9-15. DOI: 10.6052/j.issn.1000-4750.2024.02.S021

一类考虑翘曲畸变的空间梁单元位移模式

基金项目: 

国家自然科学基金项目(51808025);北京市自然科学基金项目(8202012);长江学者和创新团队发展计划资助项目(IRT_17R06);北京建筑大学北京未来城市设计高精尖创新中心项目(UDC2019021424);北京建筑大学金字塔人才培养工程项目(JDYC20200329)

详细信息
    作者简介:

    张 尧(1996−),男,四川人,硕士生,主要从事桥梁与隧道工程、有限元程序设计研究(E-mail: 792641209@qq.com)

    李国华(1974−),女,山东人,讲师,博士,主要从事结构力学、结构工程抗震等研究(E-mail: liguohua@bucea.edu.cn)

    王秀芳(1984−),女,内蒙古人,副教授,博士,主要从事材料力学、古建筑保护等研究(E-mail: wangxiufang@bucea.edu.cn)

    通讯作者:

    董 军(1967−),男,山东人,教授,博士,主要从事桥梁与隧道工程、结构工程及计算力学研究(E-mail: jdongcg@bucea.edu.cn)

  • 中图分类号: TU31

A KIND OF DISPLACEMENT MODE OF SPATIAL BEAM ELEMENT CONSIDERING THE EFFECT OF WARPING AND DISTORTION

  • 摘要:

    基于弹性理论和扭转几何关系,推导了单结点6自由度、低次、具备翘曲畸变计算能力的空间梁单元位移模式,并丰富了“两结点双线性插值梁单元(Bm_ZY)”的空间模型。进一步通过自编的ZQFEM有限元程序建立了约束扭转模型,研究了截面形状、壁厚对翘曲畸变的影响。数值算例验证了该梁单元位移模式的正确性,同时数值算例分析表明:翘曲、畸变效应,会显著增大截面的扭转刚度;Midas Civil的计算结果并不连续。

    Abstract:

    Based on the elastic theory and on the torsional geometry relationship of a constrained beam, deduced is a constrained torsional model of a single-node 6-degree-of-freedom, and of low-order beam element with warpage and distortion calculation ability, and enriched is the space model of "two-node bilinear interpolation beam element (Bm_ZY)" . Furthermore, the constrained torsional model was established by ZQFEM software, and the influence of section shape and wall thickness on warpage and distortion was studied. The numerical examples verify the correctness of the displacement mode of the beam element, and the numerical analysis also shows that the warpage and distortion effects will significantly increase the torsional stiffness of the cross section of the beam, and that the results of Midas Civil calculations are not continuous.

  • 图  1   梁单元坐标系

    Figure  1.   Beam element coordinate system

    图  2   空心截面扭转角与壁厚曲线图

    Figure  2.   A Curve of torsional Angle and wall thickness of hollow section

    1   矩形截面积分示意图

    1.   Integral diagram of rectangular section

    表  1   实心截面扭转角计算结果

    Table  1   Calculation results of torsional angle of solid belly section

    截面形状 Midas Civil_翘曲 Midas Civil_非翘曲 Python_初等梁[14] 《材料力学》[6] Bm_ZY
    实心圆形
    (相对误差)
    127 323 954.474
    (+0.00%)
    127 323 954.474
    (+0.00%)
    127 323 954.474
    (+0.00%)
    127 323 954.474
    (+0.00%)
    61 941 383.257
    (−51.35%)
    实心矩形
    (相对误差)
    9 121 250.417
    (+14.02%)
    10 288 856.640
    (+28.61%)
    8 000 000.000
    (+0.00%)
    8 000 000.000
    (+0.00%)
    3 182 634.608
    (−60.22%)
    实心正方形
    (相对误差)
    79 038 701.805
    (+5.38%)
    88 888 888.889
    (+18.51%)
    75 000 000.000
    (+0.00%)
    75 000 000.000
    (+0.00%)
    32 142 857.143
    (−57.14%)
    下载: 导出CSV

    1   名词解释

    1   Explanation of nouns

    符号 含义 符号 含义 符号 含义 符号 含义
    γyz 局部坐标系yoz剪应变 θyz 局部坐标系yoz面转角 “,”(下角标) 偏导简化符号 r 截面半径(外轮廓)
    γzx 局部坐标系xoz剪应变 θzx 局部坐标系xoz面转角 A 梁单元截面积 h 截面高(外轮廓)
    γxy 局部坐标系xoy剪应变 θxy 局部坐标系xoy面转角 L 梁单元长度 b 截面宽(外轮廓)
    εx 局部坐标系x轴向应变 u 局部坐标系x轴向位移 µ 泊松比 E 弹性模量
    εy 局部坐标系y轴向应变 v 局部坐标系y切向位移 U2 弹性常数[15] U1 弹性常数[15]
    εz 局部坐标系z轴向应变 w 局部坐标系z切向位移 D 本构矩阵 B 几何矩阵
    ks 剪切修正系数(剪切系数) kA 变截面参数 q 位移列阵 N 形函数矩阵
    ε 应变矩阵
    下载: 导出CSV

    2   积分表

    2   Table of integration

    i-j-k ηi-j-k
    1-0-0 b2k1+h2k281h2
    2-0-0 b3[ln(kk1+k1)+k1kk1]+h3[ln(kk2+k2)+k2kk2]481h3
    2-2-0 b3[ln(kk1+k1)+k1kk1]+2h3ln(kk2+k2)481h3
    2-0-2 2b3ln(kk1+k1)+h3[ln(kk2+k2)+k2kk2]481h3
    3-0-0 b4(kk31/3+k1)+h4(kk32/3+k2)641h4
    3-2-0 b4kk31/3+h4k2641h4
    3-0-2 b4k1+h4kk32/3641h4
    3-2-2 b4(k1arctank1)+h4(k2+arctank1)641h4
    3-4-0 b4(k31/3k1+arctank1)+h4(π/2arctank1)641h4
    3-0-4 b4arctank1+h4(k32/3k2arctank1)641h4
    4-2-0 b5[5ln(kk1+k1)+3k1kk1+2kk31k1]+4h5[ln(kk2+k2)+k2kk2]10241h5
    4-0-2 4b5[ln(kk1+k1)+k1kk1]+h5[5ln(kk2+k2)+3k2kk2+2kk32k2]10241h5
    4-4-0 b5[3ln(kk1+k1)+5k31kk13k1kk31]+8h5ln(kk2+k2)10241h5
    4-0-4 8b5ln(kk1+k1)+h5[3ln(kk2+k2)+5k32kk23k2kk32]10241h5
    5-2-0 b6(kk51/5+k31/3)+h6(kk32/3+k2)3201h6
    5-0-2 b6(kk31/3+k1)+h6(kk52/5+k32/3)3201h6
    下载: 导出CSV
  • [1] 项海帆. 高等桥梁结构理论[M]. 2版. 北京: 人民交通出版社, 2013: 9.

    XIANG Haifan. Advanced theory of bridge structures [M]. 2nd ed. Beijing: China Communication Press, 2013: 9. (in Chinese)

    [2] 包世华, 周坚. 薄壁杆件结构力学[M]. 北京: 中国建筑工业出版社, 2006: 644.

    BAO Shihua, ZHOU Jian. Structural mechanics of thin-walled bars [M]. Beijing: China Architecture & Building Press, 2006: 644. (in Chinese)

    [3] 西南交通大学. 铁路预应力混凝土单室箱梁的约束扭转计算[J]. 桥梁建设, 1977(1): 67 − 105.

    Southwest Jiaotong University. Constrained torsion calculation of railway prestressed concrete single box girder [J]. Bridge Construction, 1977(1): 67 − 105. (in Chinese)

    [4] 刘志翁. 薄壁箱梁畸变效应研究[D]. 兰州: 兰州交通大学, 2011.

    LIU Zhiweng. Distortion effect analysis of thin-walled box girder [D]. Lanzhou: Lanzhou Jiaotong University, 2011. (in Chinese)

    [5] 符拉索夫. 薄壁空间体系的建筑力学[M]. 腾智明, 译. 北京: 中国工业出版社, 1949.

    VLASOV WRITTEN. Building mechanics of thin-walled space systems [M]. Transted by TENG Zhiming. Beijing: China Building Materials Press, 1949. (in Chinese)

    [6] 孙训方, 方孝淑, 关来泰. 材料力学[M]. 5版. 北京: 高等教育出版社, 2013: 224.

    SUN Xunfang, FANG Xiaoshu, GUAN Laitai. Mechanics of materials [M]. Beijing: Higher Education Press, 2013: 224. (in Chinese)

    [7] 强士中, 李乔. 关于闭口薄壁杆件约束扭转的周边不变形理论[J]. 桥梁建设, 1985(1): 63 − 75.

    QIANG Shizhong, LI Qiao. The theory of non-deformation around closed thin wall bar in constrained torsion [J]. Bridge Construction, 1985(1): 63 − 75. (in Chinese)

    [8] LOGAN D L. 有限元方法基础教程(国际单位制版)[M]. 张荣华, 王蓝婧, 李继荣, 译. 5版. 北京: 电子工业出版社, 2014: 594.

    LOGAN D L. A first course in the finite element method SI Version [M]. Transted by ZHANG Ronghua, WANG Lanjing, LI Jirong. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 594. (in Chinese)

    [9] 杨绿峰, 任晓军, 陈建芳, 等. 有限元法研究闭口薄壁杆件约束扭转[J]. 广西大学学报(自然科学版), 2008, 33(1): 1 − 4. doi: 10.13624/j.cnki.issn.1001-7445.2008.01.014

    YANG Lufeng, REN Xiaojun, CHEN Jianfang, et al. Torsional analysis and application of thin walled bar with closed profile [J]. Journal of Guangxi University (Natural Science Edition), 2008, 33(1): 1 − 4. doi: 10.13624/j.cnki.issn.1001-7445.2008.01.014

    [10] 钟新谷, 马平, 曾庆元. 多室箱形梁非线性有限元分析[J]. 土木工程学报, 1999, 32(6): 32 − 39. doi: 10.3321/j.issn:1000-131X.1999.06.005

    ZHONG Xingu, MA Ping, ZENG Qingyuan. Nonlinear finite element analysis of thin-walled multicell box girders [J]. China Civil Engineering Journal, 1999, 32(6): 32 − 39. (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.06.005

    [11] 韦成龙, 曾庆元. 薄壁曲线箱梁考虑翘曲、畸变和剪滞效应的空间分析[J]. 土木工程学报, 2000, 33(6): 81 − 87. doi: 10.15951/j.tmgcxb.2000.06.015

    WEI Chenglong, ZENG Qingyuan. A new element for thin-walled curved box girder analysis including warping distortion and shear-lag effects [J]. China Civil Engineering Journal, 2000, 33(6): 81 − 87. doi: 10.15951/j.tmgcxb.2000.06.015

    [12] 谢旭, 黄剑源. 薄壁箱形梁桥约束扭转下翘曲、畸变和剪滞效应的空间分析[J]. 土木工程学报, 1995, 28(4): 3 − 14.

    XIE Xu, HUANG Jianyuan. Three dimentional analysis for warping, distortion and shear lag effect of thin-walled box girder bridge under ristrained torsion [J]. China Civil Engineering Journal, 1995, 28(4): 3 − 14. (in Chinese)

    [13] 张叔辉. 曲桥分析的薄壁箱梁单元[J]. 土木工程学报, 1984, 17(2): 1 − 13.

    ZHANG Shuhui. A new thin-walled box beam element for curved bridge analysis [J]. China Civil Engineering Journal, 1984, 17(2): 1 − 13. (in Chinese)

    [14] 张尧, 董军, 李国华, 等. 两结点双线性插值梁单元[C]. 广州: 第30届全国结构工程学术会议论文集(第Ⅱ册), 2021: 131 − 138.

    ZHANG Yao, DONG Jun, LI Guohua, et al. Two-node bilinear interpolation beam element [C]. Guangzhou: Proceedings of the 30th National Structural Engineering Academic Conference (Volume Ⅱ), 2021: 131 − 138. (in Chinese)

    [15] 徐芝纶. 弹性力学简明教程[M]. 5版. 北京: 高等教育出版社, 2018: 247.

    XU Zhilun. Concise course in elasticity [M]. 5th ed. Beijing: Higher Education Press, 2018: 247. (in Chinese)

    [16] 张尧, 董军, 李国华, 等. 浅析质量矩阵对动力计算精度的影响[J]. 工程力学, 2023, 40(增刊1): 11 − 18. doi: 10.6052/j.issn.1000-4750.2022.06.S016

    ZHANG Yao, DONG Jun, LI Guohua, et al. Analysis of the influence of mass matrix on the precision of dynamic calculation [J]. Engineering Mechanics, 2023, 40(Suppl 1): 11 − 18. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.06.S016

    [17] 张尧, 董军, 李国华, 等. 四节点双线性插值板壳单元[C]. 赣州: 第32届全国结构工程学术会议论文集(第I册), 2023: 198 − 205.

    ZHANG Yao, DONG Jun, LI Guohua, et al. The four-node bilinear interpolating plate and shell element [C]. Ganzhou: Proceedings of the 32th National Structural Engineering Academic Conference (Volume I), 2023: 198 − 205. (in Chinese)

图(3)  /  表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-21
  • 修回日期:  2025-01-02
  • 网络出版日期:  2025-02-18
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回