STUDY ON COMPRESSIVE PROPERTIES OF CERAMIC SPHERES REINFORCED POROUS ALUMINUM MATRIX
-
摘要:
为了研究陶瓷球增强多孔铝复合材料的压缩性能,对2组不同陶瓷球含量的复合材料进行了准静态压缩试验,并基于非线性有限元软件ABAQUS建立了相应的数值模型。将有限元模拟结果与试验结果进行对比验证,并从陶瓷球粒径、体积分数和材料性质三个方面深入研究了该复合材料的力学特性、破坏模式以及能量吸收能力。研究表明:复合材料内陶瓷球体积分数的提升能一定程度增强材料的线弹性阶段弹性模量,而陶瓷粒径和材料类型对此影响不大。在塑性变形阶段,更大的陶瓷球体积分数和更小的陶瓷粒径有助于提高应力平台区的斜率;静态压缩下,复合材料较薄孔壁发生塑性变形,内部陶瓷球体接触导致应力集中,随着压缩进行球体与多孔铝基体界面脱粘,部分球体碎裂,裂纹沿材料孔壁薄弱区域扩展,导致材料变形失效;较小粒径的陶瓷球、一定程度提高陶瓷球的体积分数以及使用Al2O3作为增强相相较SiC可进一步提高复合材料的能量吸收能力。
Abstract:To study the compressive properties of ceramic spheres reinforced porous aluminum composites, quasi-static compression tests of composites with two different ceramic sphere contents were carried out, and the corresponding numerical models were established based on the nonlinear finite element software ABAQUS. The simulation results were compared with the experimental results, and the mechanical properties, failure modes and energy absorption capacity of the composites were analyzed from three aspects: ceramic sphere particle size, volume fraction and material properties. The results show that the increase of the volume fraction of ceramic spheres in the composite material can enhance the Young 's modulus of the material in the linear elastic stage to a certain extent, while the ceramic particle size and material type have little effect on it. In the plastic deformation stage, larger ceramic sphere volume fraction and smaller ceramic particle size contribute to the increase of the slope of the stress plateau region. Under quasi-static compression, the plastic deformation occurs in the thinner hole wall of the composite material, and the contact of the internal ceramic spheres leads to the stress concentration. As the compression proceeds, the interface between the sphere and the porous aluminum matrix is deboned, and some of the spheres are fragmented. Cracks propagate along the weak area of the material hole wall, resulting in the deformation and failure of material. The energy absorption capacity of the composites can be further improved by adding smaller ceramic spheres, increasing the volume fraction of ceramic spheres to a certain extent, and using Al2O3 as the reinforcing phase rather than SiC.
-
-
表 1 材料参数
Table 1 Material parameters
试样 长度/
mm宽度/
mm高度/
mm陶瓷体积
分数/(%)孔隙体积
分数/(%)密度/
(g/cm3)A-1 36.46 36.18 30.94 15.00 15.00 2.42 A-2 36.22 36.48 33.70 15.00 15.00 2.42 B-1 36.37 36.09 32.51 4.50 25.50 2.05 B-2 34.90 37.09 35.65 4.50 25.50 2.05 表 2 不同应变下的试样
Table 2 Specimens under different strains
A-1 ε = 0.02 ε = 0.1 ε = 0.2 A-2 ε = 0.02 ε = 0.1 ε = 0.2 B-1 ε = 0.02 ε = 0.1 ε = 0.2 B-2 ε = 0.02 ε = 0.1 ε = 0.2 表 3 球体模型参数
Table 3 Sphere model parameters
陶瓷粒径/mm 球体体积分数/(%) 期望体积分数/(%) 误差/(%) 3 30.044 30 0.15 4 30.148 30 0.49 4 50.025 50 0.05 5 30.013 30 0.04 材料初始屈服
应力A/MPa材料应变硬化
模量B/MPa材料硬化
指数n材料应变率
强化参数C参考应变率
ε0/s−182.3540 153.4968 0.5650 0.0049 10−3 参数 Al2O3 SiC 密度ρ0/(kg/m3) 3700 3215 剪切模量G/GPa 90.16 193.00 完整材料强度常数A 0.93 0.96 损伤材料强度常数B 0.31 0.35 应变率系数C/s−1 0 0 损伤材料强度指数M 0.6 1.0 完整材料强度指数N 0.60 0.65 σfmax 0.200 0.132 雨贡纽弹性极限HEL/GPa 19.0 11.7 雨贡纽弹性极限下压力PHEL/GPa 1.46 5.13 能量转化系数β 1 1 材料体积模量K1/GPa 130.95 220.00 材料常数K2/GPa 0.00 36.10 材料常数K3/GPa 0 0 损伤参数D1 0.005 0.480 损伤参数D2 1.00 0.48 表 6 不同应变下有限元模型截面应力云图
Table 6 Stress nephogram of finite element model cross-section under different strains
(a) ε = 0.02 (b) ε = 0.10 (c) ε = 0.15 (d) ε = 0.20 表 7 陶瓷及孔隙体积分数比模型参数
Table 7 Ceramic and pore volume fraction ratio modelling parameters
模型 陶瓷及孔隙体积分数比 期望体积分数比 误差/(%) V-1 Inf. Inf. 0.00 V-2 1.993 2:1 0.35 V-3 0.995 1:1 0.50 V-4 0.497 1:2 0.60 V-5 0 0 0.00 表 8 不同应变下有限元模型截面应力云图
Table 8 Stress nephogram of finite element model cross-section under different strains
V-1 ε = 0.02 ε = 0.1 ε = 0.15 V-2 ε = 0.02 ε = 0.1 ε = 0.15 V-3 ε = 0.02 ε = 0.1 ε = 0.15 V-4 ε = 0.02 ε = 0.1 ε = 0.15 V-5 ε = 0.02 ε = 0.1 ε = 0.15 -
[1] CHEN L Y, XU J Q, CHOI H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528(7583): 539 − 543. doi: 10.1038/nature16445
[2] DUDÁS A, LAKI G, NAGY A L, et al. Wear behaviour of ceramic particle reinforced atmospheric plasma spray coatings on the cylinder running surface of internal combustion engines [J]. Wear, 2022, 502-503: 204373. doi: 10.1016/j.wear.2022.204373
[3] KHALID M Y, UMER R, KHAN K A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications [J]. Results in Engineering, 2023, 20: 101372. doi: 10.1016/j.rineng.2023.101372
[4] ROZHBIANY F A R, JALAL S R. Reinforcement and processing on the machinability and mechanical properties of aluminum matrix composites [J]. Journal of Materials Research and Technology, 2019, 8(5): 4766 − 4777. doi: 10.1016/j.jmrt.2019.08.023
[5] AKBARI T, ANSARI A, PISHBIJARI M R. Influence of aluminum alloys on protection performance of metal matrix composite armor reinforced with ceramic particles under ballistic impact [J]. Ceramics International, 2023, 49(19): 30937 − 30950. doi: 10.1016/j.ceramint.2023.07.046
[6] REN D X, BA X L, ZHANG Z D, et al. Wire arc additive manufacturing of porous metal using welding pore defects [J]. Materials & Design, 2023, 233: 112213.
[7] CHENG Y, LI Y X, CHEN X, et al. Compressive properties and energy absorption of aluminum foams with a wide range of relative densities [J]. Journal of Materials Engineering and Performance, 2018, 27(8): 4016 − 4024. doi: 10.1007/s11665-018-3514-4
[8] MOVAHEDI N, LINUL E. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions [J]. Materials Letters, 2017, 206: 182 − 184. doi: 10.1016/j.matlet.2017.07.018
[9] 周昊, 郭锐, 姜炜. 泡沫填充碳纤维增强复合材料方形蜂窝夹芯准静态压缩特性[J]. 工程力学, 2024, 41(7): 249 − 256. doi: 10.6052/j.issn.1000-4750.2022.05.0494 ZHOU Hao, GUO Rui, JIANG Wei. Quasi-static compressive properties of carbon fiber reinforced composite square honeycomb core with foam fillers [J]. Engineering Mechanics, 2024, 41(7): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.0494
[10] 李显辉, 李文博, 朱翔, 等. 泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究[J]. 工程力学, 2023, 40(11): 244 − 256. doi: 10.6052/j.issn.1000-4750.2022.08.0715 LI Xianhui, LI Wenbo, ZHU Xiang, et al. Study on energy absorption performance of thin-walled aluminum alloy multi-cell plate (MCP) and single-cell plate (SCP) filled with aluminum foam [J]. Engineering Mechanics, 2023, 40(11): 244 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.08.0715
[11] ANDRASKAR N D, TIWARI G, GOEL M D. Impact response of ceramic structures-A review [J]. Ceramics International, 2022, 48(19): 27262 − 27279. doi: 10.1016/j.ceramint.2022.06.313
[12] TAN M T, ZHANG X F, XIONG W, et al. Influence of layered back plate on the ballistic performance of ceramic armor [J]. Composite Structures, 2023, 308: 116688. doi: 10.1016/j.compstruct.2023.116688
[13] CHAWLA N, GANESH V V, WUNSCH B. Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites [J]. Scripta Materialia, 2004, 51(2): 161 − 165. doi: 10.1016/j.scriptamat.2004.03.043
[14] 段忠英, 赵科, 刘金铃. 不同体积分数纳米Al2O3颗粒增强铝基复合材料的力学性能探究[J]. 机械研究与应用, 2021, 34(3): 55 − 58, 66. DUAN Zhongying, ZHAO Ke, LIU Jinling. Research on mechanical properties of aluminum matrix composites reinforced by Nano Al2O3 particles with different volume fractions [J]. Mechanical Research & Application, 2021, 34(3): 55 − 58, 66. (in Chinese)
[15] CHEN J H, LIU P S, WANG Y Q, et al. Mechanical properties of a new kind of porous aluminum alloy composite from ceramic hollow spheres with high strength [J]. Journal of Alloys and Compounds, 2022, 910: 164911. doi: 10.1016/j.jallcom.2022.164911
[16] FERGUSON J B, SANTA MARIA J A, SCHULTZ B F, et al. Al-Al2O3 syntactic foams—Part II: Predicting mechanical properties of metal matrix syntactic foams reinforced with ceramic spheres [J]. Materials Science and Engineering: A, 2013, 582: 423 − 432. doi: 10.1016/j.msea.2013.06.065
[17] SONTI K S M, VINCENT S, NARALA S K R. Effect of single and hybrid hollow sphere reinforcement on the deformation mechanism of aluminum matrix syntactic foam at a low strain rate [J]. Journal of Alloys and Compounds, 2022, 901: 163573. doi: 10.1016/j.jallcom.2021.163573
[18] CAO M X, JIANG F C, GUO C H, et al. Interface characterization and mechanical property of an aluminum matrix syntactic foam with multi-shelled hollow sphere structure [J]. Ceramics International, 2022, 48(13): 18821 − 18833. doi: 10.1016/j.ceramint.2022.03.159
[19] EL MOUMEN A, KANIT T, IMAD A, et al. Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches [J]. Mechanics of Materials, 2015, 83: 1 − 16. doi: 10.1016/j.mechmat.2014.12.008
[20] WU Q, XU W X, ZHANG L C. Microstructure-based modelling of fracture of particulate reinforced metal matrix composites [J]. Composites Part B:Engineering, 2019, 163: 384 − 392. doi: 10.1016/j.compositesb.2018.12.099
[21] HAUERT A, ROSSOLL A, MORTENSEN A. Particle fracture in high-volume-fraction ceramic-reinforced metals: Governing parameters and implications for composite failure [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(11): 1781 − 1800. doi: 10.1016/j.jmps.2009.08.005
[22] PONNUSAMI S A, TURTELTAUB S, VAN DER ZWAAG S. Cohesive-zone modelling of crack nucleation and propagation in particulate composites [J]. Engineering Fracture Mechanics, 2015, 149: 170 − 190. doi: 10.1016/j.engfracmech.2015.09.050
[23] SINGH R, ARORA R, PANWAR R S, et al. Characterization and Quasi-static compressive response of closed cell Al2024-B4C p composite foams and their energy absorption characteristics [J]. International Journal of Metalcasting, 2023, 17(2): 1229 − 1242. doi: 10.1007/s40962-022-00837-2
[24] WANG X L, YANG X D, CHENG Y. Compressive behaviour and energy absorption of functionally graded composite foams [J]. Materials Science and Technology, 2022, 38(18): 1625 − 1635. doi: 10.1080/02670836.2022.2097414
[25] WANG Y, CHEN F X, WANG X, et al. Micro-CT in the mechanical properties and energy absorption of closed-cell aluminium foam [J]. Materials Today Communications, 2023, 37: 106962. doi: 10.1016/j.mtcomm.2023.106962
[26] WANG E D, YAO R Y, LUO Q T, et al. High-temperature and dynamic mechanical characterization of closed-cell aluminum foams [J]. International Journal of Mechanical Sciences, 2022, 230: 107548. doi: 10.1016/j.ijmecsci.2022.107548
[27] LI T, SUN J, LENG J S, et al. Quasi-static compressive behavior and energy absorption of novel cellular structures with varying cross-section dimension [J]. Composite Structures, 2023, 306: 116582. doi: 10.1016/j.compstruct.2022.116582
[28] SU Y S, OUYANG Q B, ZHANG W L, et al. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites [J]. Materials Science and Engineering:A, 2014, 597: 359 − 369. doi: 10.1016/j.msea.2014.01.024
[29] KURŞUN A, BAYRAKTAR E, ENGINSOY H M. Experimental and numerical study of alumina reinforced aluminum matrix composites: Processing, microstructural aspects and properties [J]. Composites Part B:Engineering, 2016, 90: 302 − 314. doi: 10.1016/j.compositesb.2016.01.006
[30] SEGURADO J, LLORCA J. A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites [J]. Acta Materialia, 2005, 53(18): 4931 − 4942. doi: 10.1016/j.actamat.2005.07.013
[31] 赵超, 戴志成, 钟新谷, 等. 基于Cohesive单元的石拱桥主拱圈二相数值模拟方法[J]. 工程力学, 2021, 38(12): 97 − 106, 117. doi: 10.6052/j.issn.1000-4750.2020.11.0826 ZHAO Chao, DAI Zhicheng, ZHONG Xingu, et al. a two-phase modeling method based on cohesive elements for masonry arches [J]. Engineering Mechanics, 2021, 38(12): 97 − 106, 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0826
[32] HUANG W, ZHANG W, HUANG X L, et al. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading: Experiment and numerical modeling [J]. International Journal of Impact Engineering, 2017, 109: 78 − 91. doi: 10.1016/j.ijimpeng.2017.06.002
[33] ZHANG Z C, FENG H M, XU T, et al. Compression performances of integral-forming aluminum foam sandwich [J]. Composite Structures, 2022, 283: 115090. doi: 10.1016/j.compstruct.2021.115090
[34] YUAN Y, ZHANG Y F, RUAN D, et al. Deformation and failure of additively manufactured Voronoi foams under dynamic compressive loadings [J]. Engineering Structures, 2023, 284: 115954. doi: 10.1016/j.engstruct.2023.115954
[35] KHAN M K, IQBAL M A. Failure and fragmentation of ceramic target with varying geometric configuration under ballistic impact [J]. Ceramics International, 2022, 48(18): 26147 − 26167. doi: 10.1016/j.ceramint.2022.05.297
[36] TEPEDUZU B, KARAKUZU R. Ballistic performance of ceramic/composite structures [J]. Ceramics International, 2019, 45(2): 1651 − 1660. doi: 10.1016/j.ceramint.2018.10.042
[37] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981 − 984.
[38] FELI S, ASGARI M R. Finite element simulation of ceramic/composite armor under ballistic impact [J]. Composites Part B: Engineering, 2011, 42(4): 771 − 780. doi: 10.1016/j.compositesb.2011.01.024
[39] REHME O. Cellular design for laser freeform fabrication [M]. Gottingen: Cuvillier Verlag, 2010.
[40] KEMÉNY A, LEVELES B, BUBONYI T, et al. Effect of particle size and volume ratio of ceramic hollow spheres on the mechanical properties of bimodal composite metal foams [J]. Composites Part A: Applied Science and Manufacturing, 2021, 140: 106152. doi: 10.1016/j.compositesa.2020.106152