Loading [MathJax]/jax/output/SVG/jax.js

陶瓷球增强多孔铝复合材料压缩性能研究

孙伟境, 张先锋, 谈梦婷, 韩国庆, 刘慕皓

孙伟境, 张先锋, 谈梦婷, 韩国庆, 刘慕皓. 陶瓷球增强多孔铝复合材料压缩性能研究[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.09.0717
引用本文: 孙伟境, 张先锋, 谈梦婷, 韩国庆, 刘慕皓. 陶瓷球增强多孔铝复合材料压缩性能研究[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.09.0717
SUN Wei-jing, ZHANG Xian-feng, TAN Meng-ting, HAN Guo-qing, LIU Mu-hao. STUDY ON COMPRESSIVE PROPERTIES OF CERAMIC SPHERES REINFORCED POROUS ALUMINUM MATRIX[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0717
Citation: SUN Wei-jing, ZHANG Xian-feng, TAN Meng-ting, HAN Guo-qing, LIU Mu-hao. STUDY ON COMPRESSIVE PROPERTIES OF CERAMIC SPHERES REINFORCED POROUS ALUMINUM MATRIX[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0717

陶瓷球增强多孔铝复合材料压缩性能研究

基金项目: 国家自然科学基金项目(12102200, 12141202);江苏省自然科学基金项目(BK20210320)
详细信息
    作者简介:

    孙伟境(1999−),男,安徽人,硕士生,主要从事陶瓷金属复合材料的研究(E-mail: 785520190@qq.com)

    谈梦婷(1991−),女,江苏人,讲师,博士,主要从事装甲陶瓷防护技术研究(Email: mengting.tan@njust.edu.cn)

    韩国庆(1996−),男,山西人,博士生,主要从事透明陶瓷损伤演化及复合装甲抗弹特性的研究(E-mail: 758571417@qq.com)

    刘慕皓(1997−),男,河北人,博士生,主要从事脆性材料本构模型研究(E-mail: 1437966356@qq.com)

    通讯作者:

    张先锋(1978−),男,重庆人,教授,博士,博导,主要从事材料动态力学行为研究(E-mail: lynx@njust.edu.cn)

  • 中图分类号: TB333

STUDY ON COMPRESSIVE PROPERTIES OF CERAMIC SPHERES REINFORCED POROUS ALUMINUM MATRIX

  • 摘要:

    为了研究陶瓷球增强多孔铝复合材料的压缩性能,对2组不同陶瓷球含量的复合材料进行了准静态压缩试验,并基于非线性有限元软件ABAQUS建立了相应的数值模型。将有限元模拟结果与试验结果进行对比验证,并从陶瓷球粒径、体积分数和材料性质三个方面深入研究了该复合材料的力学特性、破坏模式以及能量吸收能力。研究表明:复合材料内陶瓷球体积分数的提升能一定程度增强材料的线弹性阶段弹性模量,而陶瓷粒径和材料类型对此影响不大。在塑性变形阶段,更大的陶瓷球体积分数和更小的陶瓷粒径有助于提高应力平台区的斜率;静态压缩下,复合材料较薄孔壁发生塑性变形,内部陶瓷球体接触导致应力集中,随着压缩进行球体与多孔铝基体界面脱粘,部分球体碎裂,裂纹沿材料孔壁薄弱区域扩展,导致材料变形失效;较小粒径的陶瓷球、一定程度提高陶瓷球的体积分数以及使用Al2O3作为增强相相较SiC可进一步提高复合材料的能量吸收能力。

    Abstract:

    To study the compressive properties of ceramic spheres reinforced porous aluminum composites, quasi-static compression tests of composites with two different ceramic sphere contents were carried out, and the corresponding numerical models were established based on the nonlinear finite element software ABAQUS. The simulation results were compared with the experimental results, and the mechanical properties, failure modes and energy absorption capacity of the composites were analyzed from three aspects: ceramic sphere particle size, volume fraction and material properties. The results show that the increase of the volume fraction of ceramic spheres in the composite material can enhance the Young 's modulus of the material in the linear elastic stage to a certain extent, while the ceramic particle size and material type have little effect on it. In the plastic deformation stage, larger ceramic sphere volume fraction and smaller ceramic particle size contribute to the increase of the slope of the stress plateau region. Under quasi-static compression, the plastic deformation occurs in the thinner hole wall of the composite material, and the contact of the internal ceramic spheres leads to the stress concentration. As the compression proceeds, the interface between the sphere and the porous aluminum matrix is deboned, and some of the spheres are fragmented. Cracks propagate along the weak area of the material hole wall, resulting in the deformation and failure of material. The energy absorption capacity of the composites can be further improved by adding smaller ceramic spheres, increasing the volume fraction of ceramic spheres to a certain extent, and using Al2O3 as the reinforcing phase rather than SiC.

  • 图  1   陶瓷球增强多孔铝复合材料试样

    Figure  1.   Ceramic spheres reinforced porous aluminum matrix specimen

    图  2   复合材料的裂纹扩展

    Figure  2.   Crack expansion in composite materials

    图  3   复合材料细观照片

    Figure  3.   Microscopic photos of composite material

    图  4   试样真实应力-应变曲线

    Figure  4.   Specimens true stress-strain curve

    图  5   试样能量吸收-应变曲线

    Figure  5.   Specimen energy absorption-strain curve

    图  6   有限元模型建立流程图

    Figure  6.   Flow chart for establishing finite element model

    图  7   多孔铝模型截面和复合材料模型截面

    Figure  7.   Porous aluminum model cross-section and composite model cross-section

    图  8   有限元模型

    Figure  8.   Finite element model

    图  9   内聚界面强度-分离位移曲线

    Figure  9.   Cohesive interface strength-separation displacement curves

    图  10   50%孔隙率多孔铝有限元模型应力-应变曲线与试验对比

    Figure  10.   Comparison of stress-strain curves between 50% porosity porous aluminum finite element model and experiments

    图  11   压缩行为下孔隙变形过程

    Figure  11.   Deformation process of pore under compressive behavior

    图  12   应力-应变曲线与试验比对

    Figure  12.   Comparison of stress-strain curves with tests

    图  13   应力-应变曲线及能量吸收-应变曲线

    Figure  13.   Stress-strain curves and energy absorption-strain curves

    图  14   应力-应变曲线及能量吸收-应变曲线

    Figure  14.   Stress-strain curves and energy absorption-strain curves

    图  15   不同陶瓷材质有限元模型截面的应力云图

    Figure  15.   Stress nephogram of finite element model cross-section under different ceramic material

    图  16   不同应变下有限元截面的应力云图(Al2O3/SiC)

    Figure  16.   Stress nephogram of finite element model cross-section under different strain (Al2O3/SiC)

    图  17   应力-应变曲线及能量吸收-应变曲线

    Figure  17.   Stress-strain curves and energy absorption-strain curves

    表  1   材料参数

    Table  1   Material parameters

    试样 长度/
    mm
    宽度/
    mm
    高度/
    mm
    陶瓷体积
    分数/(%)
    孔隙体积
    分数/(%)
    密度/
    (g/cm3)
    A-1 36.46 36.18 30.94 15.00 15.00 2.42
    A-2 36.22 36.48 33.70 15.00 15.00 2.42
    B-1 36.37 36.09 32.51 4.50 25.50 2.05
    B-2 34.90 37.09 35.65 4.50 25.50 2.05
    下载: 导出CSV

    表  2   不同应变下的试样

    Table  2   Specimens under different strains

    A-1
    ε = 0.02 ε = 0.1 ε = 0.2
    A-2
    ε = 0.02 ε = 0.1 ε = 0.2
    B-1
    ε = 0.02 ε = 0.1 ε = 0.2
    B-2
    ε = 0.02 ε = 0.1 ε = 0.2
    下载: 导出CSV

    表  3   球体模型参数

    Table  3   Sphere model parameters

    陶瓷粒径/mm球体体积分数/(%)期望体积分数/(%)误差/(%)
    330.044300.15
    430.148300.49
    450.025500.05
    530.013300.04
    下载: 导出CSV

    表  4   铝基体Johnson-cook模型参数[33]

    Table  4   Aluminum matrix Johnson-cook model parameters [33]

    材料初始屈服
    应力A/MPa
    材料应变硬化
    模量B/MPa
    材料硬化
    指数n
    材料应变率
    强化参数C
    参考应变率
    ε0/s−1
    82.3540 153.4968 0.5650 0.0049 10−3
    下载: 导出CSV

    表  5   Al2O3/SiC 陶瓷JH-2模型参数[38]

    Table  5   The parameters of Johnson Holmquist-2 model for Al2O3/SiC [38]

    参数 Al2O3 SiC
    密度ρ0/(kg/m3) 3700 3215
    剪切模量G/GPa 90.16 193.00
    完整材料强度常数A 0.93 0.96
    损伤材料强度常数B 0.31 0.35
    应变率系数C/s−1 0 0
    损伤材料强度指数M 0.6 1.0
    完整材料强度指数N 0.60 0.65
    σfmax 0.200 0.132
    雨贡纽弹性极限HEL/GPa 19.0 11.7
    雨贡纽弹性极限下压力PHEL/GPa 1.46 5.13
    能量转化系数β 1 1
    材料体积模量K1/GPa 130.95 220.00
    材料常数K2/GPa 0.00 36.10
    材料常数K3/GPa 0 0
    损伤参数D1 0.005 0.480
    损伤参数D2 1.00 0.48
    下载: 导出CSV

    表  6   不同应变下有限元模型截面应力云图

    Table  6   Stress nephogram of finite element model cross-section under different strains

    (a) ε = 0.02 (b) ε = 0.10
    (c) ε = 0.15 (d) ε = 0.20
    下载: 导出CSV

    表  7   陶瓷及孔隙体积分数比模型参数

    Table  7   Ceramic and pore volume fraction ratio modelling parameters

    模型陶瓷及孔隙体积分数比期望体积分数比误差/(%)
    V-1Inf.Inf.0.00
    V-21.9932:10.35
    V-30.9951:10.50
    V-40.4971:20.60
    V-5000.00
    下载: 导出CSV

    表  8   不同应变下有限元模型截面应力云图

    Table  8   Stress nephogram of finite element model cross-section under different strains

    V-1
    ε = 0.02ε = 0.1ε = 0.15
    V-2
    ε = 0.02 ε = 0.1 ε = 0.15
    V-3
    ε = 0.02 ε = 0.1 ε = 0.15
    V-4
    ε = 0.02 ε = 0.1 ε = 0.15
    V-5
    ε = 0.02 ε = 0.1 ε = 0.15
    下载: 导出CSV
  • [1]

    CHEN L Y, XU J Q, CHOI H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528(7583): 539 − 543. doi: 10.1038/nature16445

    [2]

    DUDÁS A, LAKI G, NAGY A L, et al. Wear behaviour of ceramic particle reinforced atmospheric plasma spray coatings on the cylinder running surface of internal combustion engines [J]. Wear, 2022, 502-503: 204373. doi: 10.1016/j.wear.2022.204373

    [3]

    KHALID M Y, UMER R, KHAN K A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications [J]. Results in Engineering, 2023, 20: 101372. doi: 10.1016/j.rineng.2023.101372

    [4]

    ROZHBIANY F A R, JALAL S R. Reinforcement and processing on the machinability and mechanical properties of aluminum matrix composites [J]. Journal of Materials Research and Technology, 2019, 8(5): 4766 − 4777. doi: 10.1016/j.jmrt.2019.08.023

    [5]

    AKBARI T, ANSARI A, PISHBIJARI M R. Influence of aluminum alloys on protection performance of metal matrix composite armor reinforced with ceramic particles under ballistic impact [J]. Ceramics International, 2023, 49(19): 30937 − 30950. doi: 10.1016/j.ceramint.2023.07.046

    [6]

    REN D X, BA X L, ZHANG Z D, et al. Wire arc additive manufacturing of porous metal using welding pore defects [J]. Materials & Design, 2023, 233: 112213.

    [7]

    CHENG Y, LI Y X, CHEN X, et al. Compressive properties and energy absorption of aluminum foams with a wide range of relative densities [J]. Journal of Materials Engineering and Performance, 2018, 27(8): 4016 − 4024. doi: 10.1007/s11665-018-3514-4

    [8]

    MOVAHEDI N, LINUL E. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions [J]. Materials Letters, 2017, 206: 182 − 184. doi: 10.1016/j.matlet.2017.07.018

    [9] 周昊, 郭锐, 姜炜. 泡沫填充碳纤维增强复合材料方形蜂窝夹芯准静态压缩特性[J]. 工程力学, 2024, 41(7): 249 − 256. doi: 10.6052/j.issn.1000-4750.2022.05.0494

    ZHOU Hao, GUO Rui, JIANG Wei. Quasi-static compressive properties of carbon fiber reinforced composite square honeycomb core with foam fillers [J]. Engineering Mechanics, 2024, 41(7): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.0494

    [10] 李显辉, 李文博, 朱翔, 等. 泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究[J]. 工程力学, 2023, 40(11): 244 − 256. doi: 10.6052/j.issn.1000-4750.2022.08.0715

    LI Xianhui, LI Wenbo, ZHU Xiang, et al. Study on energy absorption performance of thin-walled aluminum alloy multi-cell plate (MCP) and single-cell plate (SCP) filled with aluminum foam [J]. Engineering Mechanics, 2023, 40(11): 244 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.08.0715

    [11]

    ANDRASKAR N D, TIWARI G, GOEL M D. Impact response of ceramic structures-A review [J]. Ceramics International, 2022, 48(19): 27262 − 27279. doi: 10.1016/j.ceramint.2022.06.313

    [12]

    TAN M T, ZHANG X F, XIONG W, et al. Influence of layered back plate on the ballistic performance of ceramic armor [J]. Composite Structures, 2023, 308: 116688. doi: 10.1016/j.compstruct.2023.116688

    [13]

    CHAWLA N, GANESH V V, WUNSCH B. Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites [J]. Scripta Materialia, 2004, 51(2): 161 − 165. doi: 10.1016/j.scriptamat.2004.03.043

    [14] 段忠英, 赵科, 刘金铃. 不同体积分数纳米Al2O3颗粒增强铝基复合材料的力学性能探究[J]. 机械研究与应用, 2021, 34(3): 55 − 58, 66.

    DUAN Zhongying, ZHAO Ke, LIU Jinling. Research on mechanical properties of aluminum matrix composites reinforced by Nano Al2O3 particles with different volume fractions [J]. Mechanical Research & Application, 2021, 34(3): 55 − 58, 66. (in Chinese)

    [15]

    CHEN J H, LIU P S, WANG Y Q, et al. Mechanical properties of a new kind of porous aluminum alloy composite from ceramic hollow spheres with high strength [J]. Journal of Alloys and Compounds, 2022, 910: 164911. doi: 10.1016/j.jallcom.2022.164911

    [16]

    FERGUSON J B, SANTA MARIA J A, SCHULTZ B F, et al. Al-Al2O3 syntactic foams—Part II: Predicting mechanical properties of metal matrix syntactic foams reinforced with ceramic spheres [J]. Materials Science and Engineering: A, 2013, 582: 423 − 432. doi: 10.1016/j.msea.2013.06.065

    [17]

    SONTI K S M, VINCENT S, NARALA S K R. Effect of single and hybrid hollow sphere reinforcement on the deformation mechanism of aluminum matrix syntactic foam at a low strain rate [J]. Journal of Alloys and Compounds, 2022, 901: 163573. doi: 10.1016/j.jallcom.2021.163573

    [18]

    CAO M X, JIANG F C, GUO C H, et al. Interface characterization and mechanical property of an aluminum matrix syntactic foam with multi-shelled hollow sphere structure [J]. Ceramics International, 2022, 48(13): 18821 − 18833. doi: 10.1016/j.ceramint.2022.03.159

    [19]

    EL MOUMEN A, KANIT T, IMAD A, et al. Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches [J]. Mechanics of Materials, 2015, 83: 1 − 16. doi: 10.1016/j.mechmat.2014.12.008

    [20]

    WU Q, XU W X, ZHANG L C. Microstructure-based modelling of fracture of particulate reinforced metal matrix composites [J]. Composites Part B:Engineering, 2019, 163: 384 − 392. doi: 10.1016/j.compositesb.2018.12.099

    [21]

    HAUERT A, ROSSOLL A, MORTENSEN A. Particle fracture in high-volume-fraction ceramic-reinforced metals: Governing parameters and implications for composite failure [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(11): 1781 − 1800. doi: 10.1016/j.jmps.2009.08.005

    [22]

    PONNUSAMI S A, TURTELTAUB S, VAN DER ZWAAG S. Cohesive-zone modelling of crack nucleation and propagation in particulate composites [J]. Engineering Fracture Mechanics, 2015, 149: 170 − 190. doi: 10.1016/j.engfracmech.2015.09.050

    [23]

    SINGH R, ARORA R, PANWAR R S, et al. Characterization and Quasi-static compressive response of closed cell Al2024-B4C p composite foams and their energy absorption characteristics [J]. International Journal of Metalcasting, 2023, 17(2): 1229 − 1242. doi: 10.1007/s40962-022-00837-2

    [24]

    WANG X L, YANG X D, CHENG Y. Compressive behaviour and energy absorption of functionally graded composite foams [J]. Materials Science and Technology, 2022, 38(18): 1625 − 1635. doi: 10.1080/02670836.2022.2097414

    [25]

    WANG Y, CHEN F X, WANG X, et al. Micro-CT in the mechanical properties and energy absorption of closed-cell aluminium foam [J]. Materials Today Communications, 2023, 37: 106962. doi: 10.1016/j.mtcomm.2023.106962

    [26]

    WANG E D, YAO R Y, LUO Q T, et al. High-temperature and dynamic mechanical characterization of closed-cell aluminum foams [J]. International Journal of Mechanical Sciences, 2022, 230: 107548. doi: 10.1016/j.ijmecsci.2022.107548

    [27]

    LI T, SUN J, LENG J S, et al. Quasi-static compressive behavior and energy absorption of novel cellular structures with varying cross-section dimension [J]. Composite Structures, 2023, 306: 116582. doi: 10.1016/j.compstruct.2022.116582

    [28]

    SU Y S, OUYANG Q B, ZHANG W L, et al. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites [J]. Materials Science and Engineering:A, 2014, 597: 359 − 369. doi: 10.1016/j.msea.2014.01.024

    [29]

    KURŞUN A, BAYRAKTAR E, ENGINSOY H M. Experimental and numerical study of alumina reinforced aluminum matrix composites: Processing, microstructural aspects and properties [J]. Composites Part B:Engineering, 2016, 90: 302 − 314. doi: 10.1016/j.compositesb.2016.01.006

    [30]

    SEGURADO J, LLORCA J. A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites [J]. Acta Materialia, 2005, 53(18): 4931 − 4942. doi: 10.1016/j.actamat.2005.07.013

    [31] 赵超, 戴志成, 钟新谷, 等. 基于Cohesive单元的石拱桥主拱圈二相数值模拟方法[J]. 工程力学, 2021, 38(12): 97 − 106, 117. doi: 10.6052/j.issn.1000-4750.2020.11.0826

    ZHAO Chao, DAI Zhicheng, ZHONG Xingu, et al. a two-phase modeling method based on cohesive elements for masonry arches [J]. Engineering Mechanics, 2021, 38(12): 97 − 106, 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0826

    [32]

    HUANG W, ZHANG W, HUANG X L, et al. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading: Experiment and numerical modeling [J]. International Journal of Impact Engineering, 2017, 109: 78 − 91. doi: 10.1016/j.ijimpeng.2017.06.002

    [33]

    ZHANG Z C, FENG H M, XU T, et al. Compression performances of integral-forming aluminum foam sandwich [J]. Composite Structures, 2022, 283: 115090. doi: 10.1016/j.compstruct.2021.115090

    [34]

    YUAN Y, ZHANG Y F, RUAN D, et al. Deformation and failure of additively manufactured Voronoi foams under dynamic compressive loadings [J]. Engineering Structures, 2023, 284: 115954. doi: 10.1016/j.engstruct.2023.115954

    [35]

    KHAN M K, IQBAL M A. Failure and fragmentation of ceramic target with varying geometric configuration under ballistic impact [J]. Ceramics International, 2022, 48(18): 26147 − 26167. doi: 10.1016/j.ceramint.2022.05.297

    [36]

    TEPEDUZU B, KARAKUZU R. Ballistic performance of ceramic/composite structures [J]. Ceramics International, 2019, 45(2): 1651 − 1660. doi: 10.1016/j.ceramint.2018.10.042

    [37]

    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981 − 984.

    [38]

    FELI S, ASGARI M R. Finite element simulation of ceramic/composite armor under ballistic impact [J]. Composites Part B: Engineering, 2011, 42(4): 771 − 780. doi: 10.1016/j.compositesb.2011.01.024

    [39]

    REHME O. Cellular design for laser freeform fabrication [M]. Gottingen: Cuvillier Verlag, 2010.

    [40]

    KEMÉNY A, LEVELES B, BUBONYI T, et al. Effect of particle size and volume ratio of ceramic hollow spheres on the mechanical properties of bimodal composite metal foams [J]. Composites Part A: Applied Science and Manufacturing, 2021, 140: 106152. doi: 10.1016/j.compositesa.2020.106152

图(17)  /  表(8)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  38
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-12-15
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回