Processing math: 41%

简谐荷载作用下层状饱和冻土地基动力响应分析

陈怀元, 马强

陈怀元, 马强. 简谐荷载作用下层状饱和冻土地基动力响应分析[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.09.0647
引用本文: 陈怀元, 马强. 简谐荷载作用下层状饱和冻土地基动力响应分析[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.09.0647
CHEN Huai-yuan, MA Qiang. DYNAMIC RESPONSE ANALYSIS OF LAYERED SATURATED FROZEN SOIL FOUNDATION UNDER HARMONIC LOADING[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0647
Citation: CHEN Huai-yuan, MA Qiang. DYNAMIC RESPONSE ANALYSIS OF LAYERED SATURATED FROZEN SOIL FOUNDATION UNDER HARMONIC LOADING[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0647

简谐荷载作用下层状饱和冻土地基动力响应分析

基金项目: 国家自然科学基金项目(52168053);中国博士后科学基金项目(2022MD723837);青海省自然科学基金面上基金项目(2024-ZJ-922)
详细信息
    作者简介:

    陈怀元(1999−),男,江西人,硕士生,主要从事土动力学与岩土工程抗震研究(E-mail: hy_chen2023@163.com)

    通讯作者:

    马 强(1990−),男,甘肃人,副教授,博士,硕导,主要从事土动力学与岩土工程抗震研究(E-mail: maqiang0104@163.com)

  • 中图分类号: TU445

DYNAMIC RESPONSE ANALYSIS OF LAYERED SATURATED FROZEN SOIL FOUNDATION UNDER HARMONIC LOADING

  • 摘要:

    基于含孔隙固体多孔介质理论,建立了二维层状饱和冻土地基的计算模型,研究了简谐荷载作用下层状饱和冻土地基的动力响应问题。通过Helmholtz定理和Fourier积分变换,采用传递矩阵法,结合边界及层间连续条件推导获得了层状饱和冻土地基的刚度矩阵,得到了层状饱和冻土地基在频域中的动力响应解答。通过快速傅里叶变换得到了层状饱和冻土中各相位移和应力的数值解。与已有文献进行对比后,通过数值算例分别分析讨论了上软下硬和上硬下软两种典型层状地基中表层土剪切模量、表层土温度、表层土孔隙率和荷载频率对动力响应的影响规律。研究结果表明:在上软下硬和上硬下软两种地基情况下,竖向位移和孔隙水所分担的应力幅值随着表层土剪切模量的增大而减小,随着表层土温度、表层土孔隙率和荷载频率的增大而增大;层状饱和冻土地基中软硬土层的排列次序对竖向位移和孔隙水所分担的应力影响显著。

    Abstract:

    Based on the theory of porous media containing porous solids, established is a two-dimensional calculation model for layered saturated frozen soil foundation, and studied is the dynamic response of layered saturated frozen soil foundation under harmonic load. Through Helmholtz theorem and Fourier integral transform, the stiffness matrix of layered saturated frozen soil foundation is derived by using one transfer matrix method and combining boundary and interlayer continuity conditions, and the dynamic response solution of layered saturated frozen soil foundation in frequency domain is obtained. The numerical solutions of displacement and stress of each phase in layered saturated frozen soil are obtained by fast Fourier transform. After comparing with the existing literatures, the effects of surface soil shear modulus, of surface soil temperature, of surface soil porosity and of load frequency on dynamic response in two typical layered foundations of upper soft and lower hard and upper hard and lower soft are studied by numerical examples. The computational results show that: the stress amplitude shared by the vertical displacement and pore water decreases with the increase of shear modulus of surface soil and, increases with the increase of surface soil temperature, of surface soil porosity, and of loading frequency. The arrangement order of soft and hard soil layers in the layered saturated frozen soil foundation has a significant effect on the vertical displacement and the stress shared by pore water.

  • 冻土在我国分布广泛且种类多,且多集中在我国西部。随着国家西部大开发战略及“一带一路”战略的实施,西部高海拔高寒地区已建、在建和拟建许多基础设施工程。冻土中由于孔隙冰的存在,其力学特性与未冻土有很大的不同。因此,研究饱和冻土介质在简谐荷载作用下的动力响应对于保证冻土地区建筑物的稳定性和安全性具有重要意义。

    早期关于地基的动力响应问题研究常将场地土介质简化为均质弹性介质或粘弹性介质,但土体由于地质的沉积作用,往往呈现分层特性。自THOMSON[1]首次用传递矩阵法解决层状弹性介质中波的传播问题以来,诸多学者都对该类问题进行了理论研究。AI等[2]采用Fourier积分变换和解析层元法,研究了横观各向同性多层半平面在时谐表面载荷或埋入载荷作用下的平面应变动力响应问题。YANG等[3]考虑了不同性质的层状介质相邻层界面处的非理想接触,利用傅里叶变换和高精度的积分算法,研究了简谐荷载作用于横观各向同性单相介质表面或内部时的动力响应问题。王妍等[4]建立了路面-层状地基的动力耦合模型,基于精细积分法和谱元法,得到了移动荷载作用于各向异性层状地基表面时的半解析解。

    考虑水对动力响应的影响,单相土中充满水,便成了两相饱和土。BIOT[57]最先将岩土材料模拟为饱和介质来进行研究,提出了饱和介质的波动方程。基于Biot理论,考虑饱和土的成层性,LIU等[8]将传递、反射矩阵法推广到层状饱和多孔弹性介质的动力分析中,得到了一维、二维和三维多孔弹性介质问题的通解。周凤玺等[9]利用Hemholtz矢量分解定理和Fourier变换,研究了二维饱和土地基表面作用有条形简谐荷载时的动力响应问题。郭颖等[10]建立了热冲击和机械冲击作用于饱和弹性地基表面时的热-水-力耦合模型,研究发现地基中渗透系数的各向异性对超孔隙水压力、竖向应力和竖向位移都有明显的影响。POOLADI等[11]考虑了地基表面透水和不透水两种边界条件,在柱坐标系下研究了横观各向同性饱和土地基表面任意有限区域作用有任意分布时谐荷载时的动力响应问题。AI等[12]利用代数运算和Hankel变换,得到了受轴对称竖向简谐荷载作用下多层饱和多孔弹性土的基本解。SENJUNTICHAI等[13]采用精确刚度矩阵法研究了三维时谐荷载作用下多层饱和弹性介质的动力响应问题。丁海滨等[14]基于非局部Biot理论,利用虚位移原理和Newmark积分法研究了循环荷载作用于饱和土地基表面时的动力响应问题。

    但是,常见的岩土介质在性质上是部分饱和的,即非饱和土,实际上由土骨架、液体和空气三相组成,土中气相的存在对土体动力响应的影响不可忽略。在成层非饱和土地基动力响应研究上,YE等[15]采用Hankel变换和扩展精细积分法,对竖向简谐荷载作用下多层非饱和多孔弹性介质的动力响应问题进行了研究,给出了多层非饱和多孔弹性介质在竖向简谐荷载作用下稳态动力响应的精确解。马强等[16]利用传递、反射矩阵法研究了移动简谐荷载作用于非饱和土成层地基表面时的动力响应问题,改变表层不同参数,对三种典型地基工况下的竖向位移进行了比较。施力维等[17]利用回传射线矩阵法求解了梯度非均匀非饱和土地基表面作用有简谐荷载时的动力响应问题,得到了非均匀非饱和土中各相位移和应力的数值解。

    对上述地基动力响应工作进行梳理我们可以发现,以上关于地基的动力响应问题常将场地土介质简化为单相弹性土、饱和土和非饱和土,但在西部高纬度高海拔地区,场地土多为冻土,冻土中由于冰相的存在与未冻土的动力响应有很大的不同。LECLAIRE等[1819]忽略饱和冻土中孔隙冰与多孔骨架的相互作用,建立了饱和冻土中波的传播理论,即LCA模型,并利用试验验证了理论的合理性。CARCIONE等[2022]进一步考虑了土颗粒骨架与孔隙冰两相之间的耦合作用,对Leclaire提出的饱和冻土模型进行修正,建立了LCAM模型。目前关于饱和冻土的研究多集中在单层均质地基中桩的动力响应[2325]和波的传播问题[2627]上,未考虑地基土的成层特性,鲜有文献基于饱和冻土控制方程来研究简谐荷载作用下成层饱和冻土地基的动力响应,故研究成层饱和冻土地基的动力响应无疑对冻土地区的工程建设具有重要的理论和应用价值。

    为此本文将冻土简化为饱和冻土,利用传递矩阵法来研究简谐荷载作用下成层饱和冻土地基的动力响应问题。首先,建立了简谐荷载作用下二维饱和冻土地基的动力控制方程。通过引入势函数并经过Fourier变换,对控制方程进行解耦,得到用势函数表示的各层位移和应力的通解。然后再利用传递矩阵法并结合边界及层间连续条件,推导出简谐荷载作用下层状饱和冻土地基在频域中的半解析解,最后通过快速傅里叶变换(FFT)得到饱和冻土中各相在时域内的动力响应。通过模型退化与已有文献的解进行验证比较后,详细分析了表层土剪切模量、温度、孔隙率和荷载频率对上软下硬和上硬下软两种典型层状地基动力响应的影响。

    本文将冻土地基简化为饱和冻土地基进行研究,将饱和冻土地基各层假设为由土颗粒、冰和水组成的均质各向同性的冻结饱和多孔介质,假定地表处透水,底面基岩处不透水不透气的边界条件。层状饱和冻土地基分析模型如图1所示,基岩上覆盖厚度为H的饱和冻土土层,地基表面受到频率为ω,长度为2l,幅值为q0的竖向条形简谐荷载q=q0eiωt作用。以水平方向为x轴,竖直方向为z轴建立坐标系,并把坐标原点置于地基表面,即地基表面z=0。各层中饱和冻土的土颗粒密度、流体密度、冰颗粒密度、孔隙率、土剪切模量、饱和度、泊松比、温度用ρSρFρIϕμSSrvT来表示。

    图  1  简谐荷载作用在成层饱和冻土地基示意图
    Figure  1.  The schematic diagram of harmonic load acting on layered saturated frozen soil foundation

    采用周凤玺等[28]的定义方式,认为冰形成于孔隙之中,与液态水在孔隙中共存。故饱和冻土可视为由土颗粒相、孔隙液态水相和孔隙冰相,即固相、液相和冰相组成的三相多孔介质,本文用上、下标“S”、“F”、“I”分别表示饱和冻土中的固相、液相和冰相的物理力学参数。则各相的体积分数可以写为:

    {ϕS=1ϕϕF=ϕSrϕI=ϕ(1Sr) (1)

    式中:ϕ为多孔介质孔隙率;ϕa(a=SFI)分别表示饱和冻土中的固相、液相以及冰相的体积分数;Sr为孔隙液态水的饱和度。

    在简谐荷载作用下,饱和冻土中各相的应力和位移均可表示为如下形式:

    G=Geiωt (2)

    式中:i为虚数单位,ω为荷载角频率;为便于表示,下文中上标“”均略去不写。

    基于含孔隙固体多孔介质理论,仇浩淼等[29]推导出饱和冻土的控制方程为:

    ρ11¨uS+ρ12¨uF+ρ13¨uI=R11(uS)+R12(uF)+R13(uI)μ11××uSμ13××uI(b12+b13)˙uS+b12˙uF+b13˙uI (3)
    ρ12¨uS+ρ22¨uF+ρ23¨uI=R12(uS)+R22(uF)+R23(uI)+b12˙uS(b12+b23)˙uF+b23˙uI (4)
    ρ13¨uS+ρ23¨uF+ρ33¨uI=R13(uS)+R23(uF)+R33(uI)μ13××uSμ33××uI+b13˙uS+b23˙uF(b13+b23)˙uI (5)

    式中:ρij(i=1,2,3j=1,2,3)为各相之间耦合惯性参数;Rij(i=1,2,3j=1,2,3)μ11μ13μ33为刚度参数;uSuFuI 分别表示饱和冻土介质中土颗粒骨架、孔隙液态水和孔隙冰的位移矢量;b12b23b13为黏性参数;˙u¨u表示各相位移对时间的一阶导和二阶导;为Cartesian坐标系中的Hamilton算子。

    式(3)~式(5)中惯性参数、刚性参数和黏性参数与各相的密度、体积分数、颗粒和孔隙的形状参数等之间的关系为[29]

    {ρ11=a13ϕSρS+(a121)ϕFρF+(a311)ϕIρIρ22=(a12+a131)ϕFρFρ33=(a131)ϕSρS+(a231)ϕFρF+a31ϕIρIρ12=(a121)ϕFρF,ρ23=(a231)ϕFρFρ13=(a131)ϕSρS(a311)ϕIρI (6)
    {a12=r12ϕS(ϕFρF+ϕIρI)ϕFρF(ϕF+ϕI)+1a23=r23ϕI(ϕFρF+ϕSρS)ϕFρF(ϕF+ϕS)+1a13=r13ϕI(ϕSρS+ϕIρI)ϕSρS(ϕS+ϕI)+1a31=r31ϕS(ϕSρS+ϕIρI)ϕIρI(ϕS+ϕI)+1 (7)

    式中:aij为弯曲度,表示的是j相对i相的弯曲度;rij为孔隙微观特征,对于球形颗粒rij=0.5ρSρFρI分别为土颗粒密度、孔隙液态水密度、孔隙冰颗粒密度。

    {R11=[(1c1)ϕS]2Kav+Ksm+4μ11/3R22=K2=ϕ2FKavR23=(1c3)ϕIϕFKavR33=[(1c3)ϕI]2Kav+Kim+4μ33/3R12=(1c1)ϕSϕFKavR13=(1c1)(1c3)ϕSϕIKav+2μ13/3 (8)
    {μ11=[(1g1)ϕS]2μav+μsmμ33=[(1g3)ϕI]2μav+μimμ13=(1g1)(1g3)ϕSϕIμav (9)
    {c1=Ksm/(ϕSKS)g1=μsm/(ϕSμS)c3=Kim/(ϕIKI)g3=μim/(ϕIμI)K1av=(1c1)ϕF/KS+ϕF/KF+(1c3)ϕI/KIμ1av=(1g1)ϕS/μS+ϕF/(2ωηF)+(1g3)ϕI/μI (10)
    {Kim=ϕIKI/[1+ϖ(1ϕI)]μim=ϕIμI/[1+ϖγ(1ϕI)]Ksm=(1ϕFεϕI)KS/[1+ϖ(ϕF+εϕI)]μsm=(1ϕFεϕI)μS/[1+ϖγ(ϕF+εϕI)]γ=(1+2ϖ)/(1+ϖ) (11)

    式中:KSKFKI分别为三相的体变模量;KsmKimμsmμim分别为土颗粒骨架和冰颗粒骨架的体变模量和剪切模量;Kavμav为三相介质的不排水的体变模量和剪切模量;ε为接触参数;c1c3g1g3分别为土骨架和冰骨架固结系数;μSμI分别为土颗粒、冰颗粒的剪切模量;ϖ为胶结参数。

    {b12=ηFϕ2F/κSb23=ηFϕ2F/κIb13=b013(ϕIϕS)2κS=κS0S3rκI=κI0ϕ3/[(1S2r)(1ϕ)3] (12)

    式中:ηF为流体动力黏滞系数;κSκI分别为饱和冻土颗粒骨架和冰骨架动力渗透系数;κS0κI0分别为饱和土动力渗透系数和冰渗透系数参考值;b013为黏性系数参考值。以上各参数关系在文献[29]中有详细说明。

    饱和冻土介质中的应力-应变关系为[30]

    {σSij=(K1θS+C12θF+C13θI)δij+2μ11dSij+μ13dIijσF=C12θS+K2θF+C23θIσIij=(C13θS+C23θF+K3θI)δij+2μ33dIij+μ13dSij (13)
    {C12=(1c1)ϕSϕFKav,C13=(1c1)(1c3)ϕSϕIKavC23=(1c3)ϕIϕFKav,K1=((1c1)ϕS)2Kav+KsmK2=ϕ2FKav,K3=[(1c3)ϕI]2Kav+Kim (14)
    {θS=uSi,i,θF=uFi,i,θI=uIi,idSij=εSijθSδij/3,dIij=εIijθIδij/3εSij=(uSi,j+uSj,i)/2,εIij=(uIi,j+uIj,i)/2 (15)

    式中:σSijσFσIij分别为作用在表征土颗粒相、孔隙液态水相、孔隙冰相的应力分量;C12C13C23分别为固液耦合体积模量、固冰耦合体积模量、冰液耦合体积模量;K1K2K3为体积弹性模量;δij为克罗内克符号;θSθFθI分别为土颗粒相、孔隙液态水相和孔隙冰相的体应变;dSijdIij分别为土颗粒相和孔隙冰相的偏应变;εSijεIij分别为土颗粒相和孔隙冰相的应变。

    在上述饱和冻土控制方程中涉及多孔介质的参数,周斌[31]认为孔隙率和含冰率是影响饱和冻土介质特性的重要参数。LECLAIRE等[18]关于含冰率的表述采用了正态分布孔隙,认为在某一的温度下,当孔隙小于某一尺度时,孔隙中的水不会冻结,大于这一孔径的孔隙中的水全部冻结,因此计算出了温度与孔隙含冰率的关系:

    ϕF=(1ϕS)Ar0/ln(T0/T)0exp[(rrav)2/(2Δr2)]dr (16)

    r=0r=+的高斯概率函数进行归一化,可得未冻水含量表达式表示如下[22]

    ϕF=(1ϕS)erf(ζ)+erf(η)1+erf(η) (17)
    ζ=r0/ln(T0/Tk0)2Δrη (18)
    η=rav2Δr (19)

    式中:rav为平均孔隙半径;Δr为孔隙半径的标准差;r0=0.228 nm;Tk0=T+T0Tk0T均表示温度,Tk0以开尔文为单位,T以摄氏度为单位,T0=273.15K

    将式(2)代入式(3)~式(5)中可得:

    a11uS+a12uF+a13uI=R11(uS)+R12(uF)+R13(uI)μ11××uSμ13××uI (20)
    a12uS+a22uF+a23uI=R12(uS)+R22(uF)+R23(uI) (21)
    a13uS+a23uF+a33uI=R13(uS)+R23(uF)+R33(uI)μ13××uSμ33××uI (22)

    式中:a11=ρ11ω2+(b12+b13)iωa12=ρ12ω2b12iωa13=ρ13ω2b13iωa22=ρ22ω2+(b12+b23)iωa23=ρ23ω2b23iωa33=ρ33ω2+(b13+b23)iω

    根据Helmholtz矢量分解原理,饱和冻土中固相、液相和冰相的位移矢量可以用势函数表示为:

    ua=ϕa+×ψaψa=0 (23)

    式中:φaψa(a=SFI)分别为三相介质的标量势函数和矢量势函数。

    将式(23)代入式(20)~式(22)中,整理可得:

    a11φS+a12φF+a13φI=R112φS+R122φF+R132φI (24)
    a12φS+a22φF+a23φI=R122φS+R222φF+R232φI (25)
    a13φS+a23φF+a33φI=R132φS+R232φF+R332φI (26)
    a11ψS+a12ψF+a13ψI=μ112ψS+μ132ψI (27)
    a12ψS+a22ψF+a23ψI=0 (28)
    a13ψS+a23ψF+a33ψI=μ132ψS+μ332ψI (29)

    上述控制方程通过对水平坐标x进行Fourier变换,可化为易于求解的常微分方程。其中关于函数f(x,z)的Fourier变换形式如下:

    ˜f(ξ,z)=f(x,z)eiξxdx (30)

    式中:上标“~”为对空间坐标x做一次Fourier变换,ξ为Fourier变换参数。

    对式(24)、式(25)和式(26)进行Fourier变换整理可得:

    R11d2˜φSdz2+A11˜φS+R12d2˜φFdz2+A12˜φF+R13d2˜φIdz2+A13˜φI=0 (31)
    R12d2˜φSdz2+A12˜φS+R22d2˜φFdz2+A22˜φF+R23d2˜φIdz2+A23˜φI=0 (32)
    R13d2˜φSdz2+A13˜φS+R23d2˜φFdz2+A23˜φF+R33d2˜φIdz2+A33˜φI=0 (33)

    式中:A11=a11ξ2R11A12=a12ξ2R12A13=a13ξ2R13A22=a22ξ2R22A23=a23ξ2R23A33=a33ξ2R33

    设方程组式(31)~式(33)的解为:

    [˜φS˜φF˜φI]T=[cScFcI]Texp(λz) (34)

    将式(34)代入式(31)、式(32)和式(33)中得到线性方程组:

    [λ2R13+A13λ2R12+A12λ2R11+A11λ2R23+A23λ2R22+A22λ2R12+A12λ2R33+A33λ2R23+A23λ2R13+A13][cIcFcS]=0 (35)

    当系数矩阵行列式为0时,式(35)有非零解,即:

    β1λ6+β2λ4+β3λ2+β4=0 (36)

    式中β1β2β3β4见附录A。

    设式(36)的根为±λn(n=123),则λn由下式给出:

    λn=dn(Re[λn] (37)

    可得到常微分方程组式(31)~式(33)的解为:

    {\tilde \varphi _{\rm{S}}} = \sum\limits_{n = 1}^3 {( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} (38)
    {\tilde \varphi _{\rm{F}}} = \sum\limits_{n = 1}^3 {\delta _{{\rm{p}}n}^{\rm{F}} ( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} (39)
    {\tilde \varphi _{\rm{I}}} = \sum\limits_{n = 1}^3 {\delta _{{\rm{p}}n}^{\rm{I}} ( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} (40)

    式中: \delta _{{\rm{p}}n}^{\rm{F}} {\delta }_{{\rm{p}}n}^{\rm{I}}(n=1, 2, 3) 见附录A;{D_1}{D_2}{D_3}{E_1}{E_2}{E_3}为待定系数。

    对式(27)、式(28)和式(29)经过Fourier变换整理可得:

    \left\{ \begin{aligned} & {\mu _{11}}\frac{{{{\rm{d}}^2}{{\tilde \psi }_{\rm{S}}}}}{{{\rm{d}}{{\textit{z}}^2}}} + {B_{11}}{{\tilde \psi }_{\rm{S}}} + {B_{12}}{{\tilde \psi }_{\rm{F}}} + {\mu _{13}}\frac{{{{\rm{d}}^2}{{\tilde \psi }_{\rm{I}}}}}{{{\rm{d}}{{\textit{z}}^2}}} + {B_{13}}{{\tilde \psi }_{\rm{I}}} = 0 \\& {B_{21}}{{\tilde \psi }_{\rm{S}}} + {B_{22}}{{\tilde \psi }_{\rm{F}}} + {B_{23}}{{\tilde \psi }_{\rm{I}}} = 0 \\& {\mu _{13}}\frac{{{{\rm{d}}^2}{{\tilde \psi }_{\rm{S}}}}}{{{\rm{d}}{{\textit{z}}^2}}} + {B_{31}}{{\tilde \psi }_{\rm{S}}} + {B_{32}}{{\tilde \psi }_{\rm{F}}} + {\mu _{33}}\frac{{{{\rm{d}}^2}{{\tilde \psi }_{\rm{I}}}}}{{{\rm{d}}{{\textit{z}}^2}}} + {B_{33}}{{\tilde \psi }_{\rm{I}}} = 0 \end{aligned}\right. (41)

    式中:{B_{11}} = - {a_{11}} - {\xi ^2}{\mu _{11}}{B_{12}} = - {a_{12}}{B_{13}} = - {a_{13}} - {\xi ^2}{\mu _{13}}{B_{21}} = {a_{12}}{B_{22}} = {a_{22}}{B_{23}} = {a_{23}}{B_{31}} = - {a_{13}} - {\xi ^2}{\mu _{13}}{B_{32}} = - {a_{23}}{B_{33}} = - {a_{33}} - {\xi ^2}{\mu _{33}}

    设方程组式(41)的解为:

    {[ {{{\tilde \psi }_{\rm{S}}}\quad {{\tilde \psi }_{\rm{F}}}\quad {{\tilde \psi }_{\rm{I}}}} ]^{\rm{T}}} = {[{h^{\rm{S}}}\quad {h^{\rm{F}}}\quad {h^{\rm{I}}}]^{\rm{T}}}\exp (r{\textit{z}}) (42)

    将式(42)代入式(41)中得到线性方程组:

    \left[ \begin{matrix} {{\mu _{13}}{r^2} + {B_{13}}}&{{B_{12}}}&{{\mu _{11}}{r^2} + {B_{11}}} \\ {{B_{23}}}&{{B_{22}}}&{{B_{21}}} \\ {{\mu _{33}}{r^2} + {B_{33}}}&{{B_{32}}}&{{\mu _{13}}{r^2} + {B_{31}}} \end{matrix} \right]\left[ \begin{matrix} {{h^{\rm{I}}}} \\ {{h^{\rm{F}}}} \\ {{h^{\rm{S}}}} \end{matrix} \right] = 0 (43)

    当系数矩阵行列式为0时,式(43)有非零解,即:

    {\beta _5}{r^4} + {\beta _6}{r^2} + {\beta _7} = 0 (44)

    式中,{\beta _5}{\beta _6}{\beta _7}见附录A。

    设式(44)的根为 \pm {r}_{n}(n=1, 2) ,则{r_n}由下式给出:

    {r}_{n}=\sqrt{{t}_{n}}\left(\mathrm{Re}\left[{r}_{n}\right]{\geqslant} 0\;,\;n=1, 2\right) (45)

    可得到常微分方程组式(41)的解为:

    {\tilde \psi _{\rm{S}}} = \sum\limits_{n = 1}^2 {\left( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} \right)} (46)
    {\tilde \psi _{\rm{F}}} = \sum\limits_{n = 1}^2 {\delta _{{\rm{s}}n}^{\rm{F}}\left( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} \right)} (47)
    {\tilde \psi _{\rm{I}}} = \sum\limits_{n = 1}^2 {\delta _{{\rm{s}}n}^{\rm{I}}\left( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} \right)} (48)

    式中: \delta _{{\rm{s}}n}^{\rm{F}} {\delta }_{{\rm{s}}n}^{\rm{I}}(n=1, 2) 见附录A;{M_1}{M_2}{N_1}{N_2}为待定系数。

    在直角坐标系(x,{\textit{z}})中,根据Helmholtz矢量分解原理各位移分量可用势函数\varphi \psi 表示为:

    {u}_{x}=\frac{\partial \varphi }{\partial x}-\frac{\partial \psi }{\partial {\textit{z}}}\text{,}{u}_{\textit{z}}=\frac{\partial \varphi }{\partial {\textit{z}}}+\frac{\partial \psi }{\partial x} (49)

    结合式(15)和式(49),代入式(13),可得用势函数表示的饱和冻土介质的本构方程为:

    \begin{split} & \sigma _{{\textit{z}}{\textit{z}}}^{\rm{S}} = \left( {{K_1} - {{2{\mu _{11}}} / 3}} \right){\nabla ^2}{\varphi _{\rm{S}}} + {C_{12}}{\nabla ^2}{\varphi _{\rm{F}}} + \\& \quad \;\left( {{C_{13}} - {{{\mu _{13}}} /3}} \right){\nabla ^2}{\varphi _{\rm{I}}} + 2{\mu _{11}}\left( {\frac{{{\partial ^2}{\varphi _{\rm{S}}}}}{{\partial {{\textit{z}}^2}}} + \frac{{{\partial ^2}{\psi _{\rm{S}}}}}{{\partial x\partial {\textit{z}}}}} \right) + \\& \quad \;{\mu _{13}}\left( {\frac{{{\partial ^2}{\varphi _{\rm{I}}}}}{{\partial {{\textit{z}}^2}}} + \frac{{{\partial ^2}{\psi _{\rm{I}}}}}{{\partial x\partial {\textit{z}}}}} \right) \end{split} (50)
    \begin{split} & \sigma _{x{\textit{z}}}^{\rm{S}}= {\mu _{11}}\left( {2\frac{{{\partial ^2}{\phi _{\rm{S}}}}}{{\partial x\partial {\textit{z}}}} + \frac{{{\partial ^2}{\psi _{\rm{S}}}}}{{\partial {x^2}}} - \frac{{{\partial ^2}{\psi _{\rm{S}}}}}{{\partial {{\textit{z}}^2}}}} \right) + \\& \quad \quad \frac{1}{2}{\mu _{13}}\left( {2\frac{{{\partial ^2}{\phi _{\rm{I}}}}}{{\partial x\partial {\textit{z}}}} + \frac{{{\partial ^2}{\psi _{\rm{I}}}}}{{\partial {x^2}}} - \frac{{{\partial ^2}{\psi _{\rm{I}}}}}{{\partial {{\textit{z}}^2}}}} \right) \end{split} (51)
    {\sigma ^{\rm{F}}} = {C_{12}}{\nabla ^2}{\varphi _{\rm{S}}} + {K_2}{\nabla ^2}{\varphi _{\rm{F}}} + {C_{23}}{\nabla ^2}{\varphi _{\rm{I}}} (52)
    \begin{split} & \sigma _{{\textit{z}}{\textit{z}}}^{\rm{I}}= \left( {{C_{13}} - {{{\mu _{13}}} / 3}} \right){\nabla ^2}{\varphi _{\rm{S}}} + {C_{23}}{\nabla ^2}{\varphi _{\rm{F}}} + \\[-2pt]& \quad \;\left( {{K_3} - {{2{\mu _{33}}} / 3}} \right){\nabla ^2}{\varphi _{\rm{I}}} + {\mu _{13}}\left( {\frac{{{\partial ^2}{\varphi _{\rm{S}}}}}{{\partial {{\textit{z}}^2}}} + \frac{{{\partial ^2}{\psi _{\rm{S}}}}}{{\partial x\partial {\textit{z}}}}} \right) + \\[-2pt]& \quad \;2{\mu _{33}}\left( {\frac{{{\partial ^2}{\varphi _{\rm{I}}}}}{{\partial {{\textit{z}}^2}}} + \frac{{{\partial ^2}{\psi _{\rm{I}}}}}{{\partial x\partial {\textit{z}}}}} \right) \end{split} (53)
    \begin{split} & \sigma _{x{\textit{z}}}^{\rm{I}} = {\mu _{33}}\left( {2\frac{{{\partial ^2}{\phi _{\rm{I}}}}}{{\partial x\partial {\textit{z}}}} + \frac{{{\partial ^2}{\psi _{\rm{I}}}}}{{\partial {x^2}}} - \frac{{{\partial ^2}{\psi _{\rm{I}}}}}{{\partial {{\textit{z}}^2}}}} \right) + \\& \quad \quad \frac{1}{2}{\mu _{13}}\left( {2\frac{{{\partial ^2}{\phi _{\rm{S}}}}}{{\partial x\partial {\textit{z}}}} + \frac{{{\partial ^2}{\psi _{\rm{S}}}}}{{\partial {x^2}}} - \frac{{{\partial ^2}{\psi _{\rm{S}}}}}{{\partial {{\textit{z}}^2}}}} \right) \end{split} (54)

    式中:{K_1} = {R_{11}} - \dfrac{4}{3}{\mu _{11}}{K_2} = {R_{22}}{K_3} = {R_{33}} - \dfrac{4}{3}{\mu _{33}}{C_{12}} = {R_{12}}{C_{23}} = {R_{23}}{C_{13}} = {R_{13}} - \dfrac{2}{3}{\mu _{13}}[2930] \sigma _{{\textit{z}}{\textit{z}}}^{\rm{S}} \sigma _{}^{\rm{F}} \sigma _{{\textit{z}}{\textit{z}}}^{\rm{I}}为饱和冻土介质中固相、液相和冰相的法向应力; \sigma _{x{\textit{z}}}^{\rm{S}} \sigma _{x{\textit{z}}}^{\rm{I}} 分别为饱和冻土介质中固相和冰相的剪切应力。

    将式(38)~式(40)和式(46)~式(48)进行傅里叶变换,然后代入式(49)和式(50)~式(54)中并结合各参数之间的关系,可得到饱和冻土介质中各相在傅里叶变换域中的位移和应力表达式:

    \begin{split} & \tilde u_x^{\rm{S}} = {\rm{i}}\xi \sum\limits_{n = 1}^3 {( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} + \\[-2pt]&\qquad \sum\limits_{n = 1}^2 {{r_n}( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} - {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (55)
    \begin{split} & \tilde u_{\textit{z}}^{\rm{S}} = \sum\limits_{n = 1}^3 - {\lambda _n}( {D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} - {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}} ) + \\[-2pt]&\qquad {\rm{i}}\xi \sum\limits_{n = 1}^2 ( {M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}} ) \end{split} (56)
    \begin{split} & \tilde u_{\textit{z}}^{\rm{F}} = \sum\limits_{n = 1}^3 - {\lambda _n}\delta _{{\rm{p}}n}^{\rm{F}}( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} - {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} ) +\\&\qquad {\rm{i}}\xi \sum\limits_{n = 1}^2 {\delta _{{\rm{s}}n}^{\rm{F}}( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (57)
    \begin{split} & \tilde u_x^{\rm{I}} = {\rm{i}}\xi \sum\limits_{n = 1}^3 {\delta _{{\rm{p}}n}^{\rm{I}}( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} + \\& \quad \quad \sum\limits_{n = 1}^2 {{r_n}\delta _{{\rm{s}}n}^{\rm{I}}( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} - {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (58)
    \begin{split} & \tilde u_{\textit{z}}^{\rm{I}}= \sum\limits_{n = 1}^3 { - {\lambda _n}\delta _{{\rm{p}}n}^{\rm{I}}( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} - {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} + \\& \quad \quad {\rm{i}}\xi \sum\limits_{n = 1}^2 {\delta _{{\rm{s}}n}^{\rm{I}}( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (59)
    \begin{split} & \tilde \sigma _{x{\textit{z}}}^{\rm{S}} = {\rm{i}}\xi \sum\limits_{n = 1}^3 { - {\lambda _n}( {2{\mu _{11}} + {\mu _{13}}\delta _{{\rm{p}}n}^{\rm{I}}} )( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} - {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} - \\& \quad \sum\limits_{n = 1}^2 {( {{r_n}^2 + {\xi ^2}} )\left( {{\mu _{11}} + \frac{1}{2}{\mu _{13}}\delta _{{\rm{s}}n}^{\rm{I}}} \right)( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (60)
    \begin{split} & \tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{S}} = \sum\limits_{n = 1}^3 {{\chi _n}( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} \; - \\& \quad \quad {\rm{i}}\xi \sum\limits_{n = 1}^2 {{r_n}( {2{\mu _{11}} + {\mu _{13}}\delta _{{\rm{s}}n}^{\rm{I}}} )( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} - {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (61)
    \begin{split} & {\tilde{\sigma }}^{\rm{F}}={\displaystyle \sum _{n=1}^{3}({R}_{12}+{R}_{22}{\delta }_{{\rm{p}}n}^{\rm{F}}+{R}_{23}{\delta }_{{\rm{p}}n}^{\rm{I}})}({\lambda }_{n}^{2}-{\xi }^{2})\cdot \\&\qquad ({D}_{n}{\rm e}^{-{\lambda }_{n}{\textit{z}}}+{E}_{n}{\rm e}^{{\lambda }_{n}{\textit{z}}}) \end{split} (62)
    \begin{split} & \tilde \sigma _{x{\textit{z}}}^{\rm{I}} = {\rm{i}}\xi \sum\limits_{n = 1}^3 { - {\lambda _n}( {2{\mu _{33}}\delta _{{\rm{p}}n}^{\rm{I}} + {\mu _{13}}} )( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} - {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} -\\& \quad \;\sum\limits_{n = 1}^2 {( {{r_n}^2 + {\xi ^2}} )\left( {{\mu _{33}}\delta _{{\rm{s}}n}^{\rm{I}}+ \frac{1}{2}{\mu _{13}}} \right)( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} + {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (63)
    \begin{split} & \tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{I}} = \sum\limits_{n = 1}^3 {{\alpha _n}( {{D_n}{{\rm{e}}^{ - {\lambda _n}{\textit{z}}}} + {E_n}{{\rm{e}}^{{\lambda _n}{\textit{z}}}}} )} \; - \\& \quad \quad {\rm{i}}\xi \sum\limits_{n = 1}^2 {{r_n}( {{\mu _{13}} + 2{\mu _{33}}\delta _{{\rm{s}}n}^{\rm{I}}} )( {{M_n}{{\rm{e}}^{ - {r_n}{\textit{z}}}} - {N_n}{{\rm{e}}^{{r_n}{\textit{z}}}}} )} \end{split} (64)

    式中: \tilde u_{\textit{z}}^{\rm{S}} \tilde u_{\textit{z}}^{\rm{F}} \tilde u_{\textit{z}}^{\rm{I}} 分别为固相、液相、冰相的竖向位移; \tilde u_x^{\rm{S}} \tilde u_x^{\rm{I}} 分别为固相和冰相的水平位移。

    \begin{split} & {\chi }_{n}=[({R}_{11}-2{\mu }_{11})+{R}_{12}{\delta }_{{\rm{p}}n}^{\rm{F}}+({R}_{13}-{\mu }_{13}){\delta }_{{\rm{p}}n}^{\rm{I}}]({\lambda }_{n}^{2}-{\xi }^{2}) +\\&\qquad (2{\mu }_{11}+{\mu }_{13}{\delta }_{{\rm{p}}n}^{\rm{I}}){\lambda }_{n}^{2}\;\;,\;\;n=1, 2, 3;\\& {\alpha }_{n}=[({R}_{13}-{\mu }_{13})+{R}_{23}{\delta }_{{\rm{p}}n}^{\rm{F}}+({R}_{33}-2{\mu }_{33}){\delta }_{{\rm{p}}n}^{\rm{I}}]({\lambda }_{n}^{2}-{\xi }^{2}) +\\&\qquad ({\mu }_{13}+2{\mu }_{33}{\delta }_{{\rm{p}}n}^{\rm{I}}){\lambda }_{n}^{2}\;\;,\;\;n=1, 2, 3。 \end{split}

    根据图1,第j层中各相的位移和应力可表示成:

    \left[ \begin{matrix} {{{\boldsymbol{L}}^j}\left( {\xi ,{\textit{z}}} \right)} \\ {{{\boldsymbol{N}}^j}\left( {\xi ,{\textit{z}}} \right)} \end{matrix}\right] = {{{\boldsymbol{S}}^j}} {{\boldsymbol{E}}^j}( {\textit{z}} ) {{{\boldsymbol{R}}^j}} (65)

    式中: {\boldsymbol{L}}\left( {\textit{z}} \right) = [ {\tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{S}}}\;\;\;{\tilde \sigma _{x{\textit{z}}}^{\rm{S}}}\;\;\;{\tilde \sigma _{}^{\rm{F}}}\;\;\;{\tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{I}}} \;\;\; \tilde \sigma _{x{\textit{z}}}^{\rm{I}} ]^{\text{T}} {\boldsymbol{N}}\left( {\textit{z}} \right) = [ {\tilde u_x^{\rm{S}}}\;\;\; {\tilde u_{\textit{z}}^{\rm{S}}}\;\;\;{\tilde u_{\textit{z}}^{\rm{F}}}\;\;\;{\tilde u_{\textit{z}}^{\rm{I}}} \;\;\;\tilde u_{\textit{z}}^{\rm{I}} ]^{\text{T}} {\boldsymbol{S}}^j10 \times 10的常数矩阵,矩阵中各元素详见附录B, {\boldsymbol{E}}\left( {\textit{z}} \right) = {\text{diag}}[ {{{\rm{e}}^{ - {\lambda _1}{\textit{z}}}}}\;\;\;{{{\rm{e}}^{ - {\lambda _2}{\textit{z}}}}}\;\;\;{{{\rm{e}}^{ - {\lambda _3}{\textit{z}}}}}\;\;\; {{{\rm{e}}^{ - {r_1}{\textit{z}}}}}\;\;{{{\rm{e}}^{ - {r_2}{\textit{z}}}}}\;\;{{{\rm{e}}^{{\lambda _1}{\textit{z}}}}} \;\; {{{\rm{e}}^{{\lambda _2}{\textit{z}}}}}\;\;{{{\rm{e}}^{{\lambda _3}{\textit{z}}}}}\;\;{{{\rm{e}}^{{r_1}{\textit{z}}}}}\;\;{{{\rm{e}}^{{r_2}{\textit{z}}}}} ] {\boldsymbol{R}}^j= [ {{D_1^j}}\;\;{{D_2^j}}\;\;{{D_3^j}}\;\;{{M_1^j}} {{M_2^j}}\;\;\;{{E_1^j}}\;\;\;{{E_2^j}}\;\;\;{{E_3^j}}\;\;\;{{N_1^j}}\;\;\;{{N_2^j}{]^{\mathrm{T}}}} {D_1}{D_2}{D_3}{M_1}{M_2}{E_1}{E_2}{E_3}{N_1}{N_2}为待定系数,系数上标或下标“j”代表土体的第j层。

    在土体的交界面处,饱和冻土中各相的位移应力有如下连续条件:

    \begin{split} & \tilde \sigma _{{\textit{z}}{\textit{z}}}^{{{\rm{S}}^j}}( {\xi ,{h^j}} ) = \tilde \sigma _{{\textit{z}}{\textit{z}}}^{{{\rm{S}}^{j + 1}}}( {\xi ,0} ),\quad \tilde \sigma _{x{\textit{z}}}^{{{\rm{S}}^j}}( {\xi ,{h^j}} ) = \tilde \sigma _{x{\textit{z}}}^{{{\rm{S}}^{j + 1}}}( {\xi ,0} )\;, \\& \tilde \sigma ^{{{\rm{F}}^j}}( {\xi ,{h^j}} ) = \tilde \sigma ^{{{\rm{F}}^{j + 1}}}( {\xi ,0} ),\quad \tilde \sigma _{{\textit{z}}{\textit{z}}}^{{{\rm{I}}^j}}( {\xi ,{h^j}} ) = \tilde \sigma _{{\textit{z}}{\textit{z}}}^{{{\rm{I}}^{j + 1}}}( {\xi ,0} )\;, \\& \tilde \sigma _{x{\textit{z}}}^{{{\rm{I}}^j}}( {\xi ,{h^j}} ) = \tilde \sigma _{x{\textit{z}}}^{{{\rm{I}}^{j + 1}}}( {\xi ,0} ),\quad \tilde u_{\textit{z}}^{{{\rm{S}}^j}}( {\xi ,{h^j}} ) = \tilde u_{\textit{z}}^{{{\rm{S}}^{j + 1}}}( {\xi ,0} ) \;,\\& \tilde u_x^{{{\rm{S}}^j}}( {\xi ,{h^j}} ) = \tilde u_x^{{{\rm{S}}^{j + 1}}}( {\xi ,0} ),\quad \tilde u_{\textit{z}}^{{{\rm{F}}^j}}( {\xi ,{h^j}} ) = \tilde u_{\textit{z}}^{{{\rm{F}}^{j + 1}}}( {\xi ,0} )\;, \\& \tilde u_{\textit{z}}^{{{\rm{I}}^j}}( {\xi ,{h^j}} ) = \tilde u_{\textit{z}}^{{{\rm{I}}^{j + 1}}}( {\xi ,0} ),\quad \tilde u_x^{{{\rm{I}}^j}}( {\xi ,{h^j}} ) = \tilde u_x^{{{\rm{I}}^{j + 1}}}( {\xi ,0} ) \end{split} (66)

    将连续条件代入式(65),整理可得:

    {{{\boldsymbol{S}}^{j + 1}}} {{{\boldsymbol{R}}^{j + 1}}} = {{{\boldsymbol{S}}^j}} {{\boldsymbol{E}}^j}( {{{\boldsymbol{h}}^j}} ) {{{\boldsymbol{R}}^j}} (67)

    式(67)可改写为:

    {{{\boldsymbol{R}}^{j + 1}}} = {{{\boldsymbol{T}}^j}} {{{\boldsymbol{R}}^j}} (68)

    式中, {{{\boldsymbol{T}}^j}} = {\left[{{{\boldsymbol{S}}^{j + 1}}} \right]^{ - 1}} {{{\boldsymbol{S}}^j}} {{\boldsymbol{E}}^j}\left( {{{\boldsymbol{h}}^j}} \right) 为10×10的层间传递矩阵。

    由式(68)可建立j + 1层土和顶层土之间的波幅向量关系为:

    {{{\boldsymbol{R}}^{j + 1}}} = {{{\boldsymbol{T}}^j}} {{{\boldsymbol{T}}^{j - 1}}} \cdots {{{\boldsymbol{T}}^1}} {{{\boldsymbol{R}}^1}} (69)

    对于简谐荷载作用在具有刚性下卧层的饱和冻土地基表面,考虑在地基表面处({\textit{z}} = 0)透水,底面处({\textit{z}} = H)固定且不透水不透气的边界条件:

    {\textit{z}} = 0处:

    \tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{S}} + {\tilde \sigma ^{\rm{F}}} + \tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{I}} = - {q_0}\frac{{\sin \left( {\xi l} \right)}}{{\xi l}} (70)
    \tilde \sigma _{x{\textit{z}}}^{\rm{S}} = 0,\quad {\tilde \sigma ^{\rm{F}}} = 0,\quad \tilde \sigma _{{\textit{z}}{\textit{z}}}^{\rm{I}} = 0,\quad \tilde \sigma _{x{\textit{z}}}^{\rm{I}} = 0 (71)

    {\textit{z}} = H处:

    \tilde u_{\textit{z}}^{\rm{S}} = 0,\quad \tilde u_{\textit{z}}^{\rm{F}} = 0,\quad \tilde u_{\textit{z}}^{\rm{I}} = 0 (72)
    {\tilde{u}}_{x}^{\rm{I}}=0\text{,}{\tilde{u}}_{x}^{\rm{S}}=0 (73)

    将式(55)~式(64)代入边界条件式(70)~式(73)中,整理可得:

    {{{\boldsymbol{M}}^1}} {{{\boldsymbol{R}}^1}} = \left[ { - {q_0}\frac{{\sin ( {\xi l} )}}{{\xi l}}}\;\;0\;\;0\;\;0 \;\; 0 \right]^{\text{T}} (74)
    {{{\boldsymbol{M}}^N}} {{\boldsymbol{E}}^N}( {{h^N}} ) {{{\boldsymbol{R}}^N}} = [ 0\;\; 0\;\; 0\;\; 0 \;\; 0 ]^{\text{T}} (75)

    式中: {{{\boldsymbol{M}}^1}} {{{\boldsymbol{M}}^N}} 分别为下部土体对第一层和第N层土体的5 \times 10支撑刚度矩阵,其中支撑刚度矩阵{{{\boldsymbol{M}}^1}} {{{\boldsymbol{M}}^N}} 中的各元素详见附录C。

    联立式(69)和式(74),整理可得:

    {\boldsymbol{Q}} {{{\boldsymbol{R}}^j}} = \left[ { - {q_0}\frac{{\sin ( {\xi l} )}}{{\xi l}}}\;\;0\;\;0\;\;0 \;\; 0 \right]^{\text{T}} (76)

    式中, {\boldsymbol{Q}} = {{{\boldsymbol{M}}^1}} {\left( {{{\boldsymbol{T}}^1}} \right)^{ - 1}} \cdots {\left({{{\boldsymbol{T}}^{j - 1}}} \right)^{ - 1}}

    联立式(75)和式(76),整理可得:

    \begin{split} & {[ {{\boldsymbol{Q}} \;\;\;{{\boldsymbol{M}}^N}{{\boldsymbol{E}}^N}( {{h^N}} )} ]^{\text{T}}} {{{\boldsymbol{R}}^N}} = \\&\qquad \left[ - {q_0}\frac{{\sin ( {\xi l} )}}{{\xi l}}\;\;\;0\;\;\;0\;\;\;0\;\;\;0\;\;\; 0\;\;\; 0\;\;\; 0\;\;\; 0\;\;\; 0 \right]^{\text{T}} \end{split} (77)

    通过求解方程组式(77),可以解得{D_1}{D_2}{D_3}{E_1}{E_2}{E_3}{M_1}{M_2}{N_1}{N_2},并结合式(55)~式(64)即可获得频域内饱和冻土地基中任意点的应力和位移,由于被积函数表达式较为复杂,很难得出Fourier逆变换的封闭形式解,本文采用快速傅里叶变换方法(FFT)完成Fourier逆变换,波数的离散点数为1024。

    为了验证本文数值计算的准确性,可将层状饱和冻土模型退化成均质饱和土模型,在饱和冻土层状土模型中设置与饱和土相同的土体参数,并与TABATABAIE等[32]求得的简谐荷载作用下二维饱和土的动力响应解进行比较,如图2所示。对比可看出,本文的地基表面竖向位移解与文献[32]的结果具有相当高的符合度,说明了本文理论和计算方法的正确性。

    图  2  本文退化解与TABATABAIE等[32]解的对比验证
    Figure  2.  The comparison and verification between the solution of this paper and the solution of TABATABAIE et al[32]

    为了更进一步检验本文理论分析与计算方法的正确性,可将将本文模型退化为振源位于半无限均匀介质表面的Lamb问题来进行验证,并将计算结果与袁聚云等[33]在相同条件下的计算结果进行比较。当饱和度{S_{\mathrm{r}}}趋于0,孔隙率\phi 也趋于0时,饱和冻土地基退化为单相弹性地基,取\omega = 0.01\;{\text{rad/s}},泊松比\nu = 0.3,土颗粒密度{\rho _{\mathrm{S}}} = 1884\;{\text{kg/}}{{\text{m}}^{\text{3}}},弹性模量E = 1 \times {10^7}\;{\text{Pa}}图3显示了施加条形荷载的地基表面荷载边缘下正应力随深度的变化情况,可以看出本文的竖向正应力与文献[33]的结果仅在荷载作用中心点附近处的数值有一定的差异,总体趋势具有较好的一致性。

    图  3  本文退化解与袁聚云等[33]解的对比验证
    Figure  3.  The comparison and verification between the solution of this paper and the solution of YUAN Juyun et al[33]

    以两层地基为例,选择上软下硬和上硬下软两种典型层状饱和冻土地基模型来分析表层土剪切模量、表层土温度、表层土孔隙率和荷载频率对{\textit{z}} = 1\;{\text{m}}处竖向位移实部和孔隙水应力实部的影响规律。在数值算例中,取均布荷载幅值{q_0} = 1\;{\text{kPa}},荷载分布长度l = 1\;{\text{m}},取第一层土和第二层土的厚度为{h_1} = {h_2} = 2\;{\text{m}}。上软下硬地基中根据土层上下两层剪切模量比值分四种工况:即工况1、工况2、工况3、工况4分别为{{{\mu _{{\mathrm{S}}1}}} / {{\mu _{{\mathrm{S}}2}}}} = 0.2{{{\mu _{{\mathrm{S}}1}}} /{{\mu _{{\mathrm{S}}2}}}} = 0.4{{{\mu _{{\mathrm{S}}1}}} / {{\mu _{{\mathrm{S}}2}}}} = 0.6{{{\mu _{{\mathrm{S}}1}}} / {{\mu _{{\mathrm{S}}2}}}} = 0.8,其中下层土剪切模量{\mu _{{\mathrm{S}}2}} = 34.25\;{\text{GPa}}。上硬下软地基中同样根据土层上下两层剪切模量比值分四种工况:即工况5、工况6、工况7、工况8分别为{{{\mu _{{\mathrm{S}}1}}} /{{\mu _{{\mathrm{S}}2}}}} = 2{{{\mu _{{\mathrm{S}}1}}} /{{\mu _{{\mathrm{S}}2}}}} = 3{{{\mu _{{\mathrm{S}}1}}} /{{\mu _{{\mathrm{S}}2}}}} = 4{{{\mu _{{\mathrm{S}}1}}} / {{\mu _{{\mathrm{S}}2}}}} = 5,其中下层土剪切模量{\mu _{{\mathrm{S}}2}} = 6.85\;{\text{GPa}}。算例中上下两层饱和冻土的其他物理力学参数取值相同见表1,下文中研究的位移和应力均指{\textit{z}} = 1\;{\text{m}}处的土的竖向位移和孔隙水所分担的应力。

    表  1  饱和冻土地基的物理力学参数[29]
    Table  1.  Physical and mechanical parameters of saturated frozen soil foundation
    参数 土颗粒
    体变模量
    {K_{\mathrm{S} }} /GPa
    冰颗粒
    体变模量
    {K_{\rm{I}}} /GPa
    流体
    体变模量
    {K_{\rm{F}}} /GPa
    土颗粒密度
    {\rho _{\rm{S}}} /(kg/m3)
    冰颗粒
    密度
    {\rho _{\rm{I}}} /(kg/m3)
    量值 20.9 8.58 2.25 2580 920
    参数 流体密度
    {\rho _{\rm{F}}} /(kg/m3)
    流体动力
    粘滞系数
    {\eta _{\rm{F}}} /(kg/m·s)
    冰颗粒
    剪切模量
    {\mu _{\rm{I}}} /GPa
    土骨架
    渗透系数
    参考值
    {\kappa _{\rm{S0}}} /m2
    冰渗透
    系数参考值
    {\kappa _{\rm{I0}}} /m2
    量值 1.8×10−3 3.32 1.0×10−11 5.0×10−5 1000
    下载: 导出CSV 
    | 显示表格

    保持下层土剪切模量不变,图4图5分别给出了在上软下硬地基情况下工况1~工况4时{\textit{z}} = 1\;{\text{m}}处的土体竖向位移实部和孔隙水所分担的应力(以下简称孔隙水应力)实部曲线。从图4图5可知,竖向位移幅值和孔隙水应力幅值均出现在荷载作用点正下方处,且曲线关于荷载作用点x = 0对称。表层土剪切模量的改变对竖向位移和孔隙水应力的影响多集中在−6 m<x<6 m的区间内。随着表层土剪切模量的增大,竖向位移幅值和孔隙水应力幅值随之减小,这是因为表层土剪切模量的增大,即饱和冻土土骨架刚性增强。一方面,饱和冻土变得更坚硬,土骨架变形减小,致使竖向位移减小。另一方面,土骨架刚性增强,饱和冻土中固相所承担的荷载相应增加,孔隙水所承担的荷载减小。此外,从图4图5还可以看出随着表层土剪切模量的增大,竖向位移和孔隙水应力随水平方向衰减的速度越来越慢。当表层土剪切模量与下层土剪切模量相近时(工况4),即趋于均质地基时,地表竖向位移和孔隙水应力幅值最小,这说明层状饱和冻土地基的分层参数和地基土体的非均匀程度对地基的动力响应影响显著。

    图  4  工况1~工况4下表层土剪切模量变化对竖向位移实部的影响
    Figure  4.  The influence of shear modulus change of surface soil on the real part of vertical displacement under Case 1~ Case 4
    图  5  工况1~工况4下表层土剪切模量变化对孔隙水应力实部的影响
    Figure  5.  The influence of shear modulus change of surface soil on the real part of pore water stress under Case 1~ Case 4

    由文献[34]可知,冻土地区土壤温度在一定深度以上是季节性变化的,夏季上层土壤温度高于下层,冬季上层土壤温度低于下层;而且温度的改变还会影响饱和冻土中各组份的变化,故温度对饱和冻土地基动力响应的影响不可忽视。在工况1下,保持下层土温度({T_2} = −0.5 ℃)和其他参数不变,图6图7给出了在上软下硬地基中,表层土温度对竖向位移实部和孔隙水应力实部沿水平方向的影响曲线。从图中可以看出,温度的升高使得动荷载影响的范围逐渐扩大,竖向位移和孔隙水应力曲线幅值均随温度的升高而增大,这是因为随着温度的升高,孔隙中的冰颗粒含量逐渐降低,与土颗粒骨架相互作用逐渐减弱,其所承担的荷载在相应的减少,造成孔隙水和土骨架所承担的荷载增大,进而导致土骨架竖向位移增大,这点从图7孔隙水应力随着温度的升高在逐渐增大也可以得到佐证。此外,可知温度的变化对竖向位移幅值影响较小,对孔隙水应力有显著影响。且随着温度的升高,温度对竖向位移幅值和孔隙水应力幅值的影响逐渐增强。

    图  6  工况1下表层土温度变化对竖向位移实部的影响
    Figure  6.  The influence of surface soil temperature change on the real part of vertical displacement under Case 1
    图  7  工况1下表层土温度变化对孔隙水应力实部的影响
    Figure  7.  The influence of surface soil temperature change on the real part of pore water stress under Case 1

    保持下层土孔隙率不变,改变表层土孔隙率,图8图9研究了在工况1下表层孔隙率对竖向位移实部和孔隙水应力实部影响曲线。从图中可以看出,竖向位移和孔隙水应力幅值均随表层孔隙率的增大而增大。造成这个现象的原因是随着孔隙率的增大,土体的密实度减小,在承受相同荷载的情况下变形增大,即导致土体竖向位移曲线幅值增大;孔隙率的增大也意味着单元体中连通孔隙的体积逐渐增大,孔隙中的冰颗粒对土颗粒骨架的支撑作用逐渐减弱,故孔隙水所分担的应力也在逐渐增大。

    图  8  工况1下表层土孔隙率变化对竖向位移实部的影响
    Figure  8.  The influence of porosity change of surface soil on the real part of vertical displacement under Case 1
    图  9  工况1下表层土孔隙率变化对孔隙水应力实部的影响
    Figure  9.  The influence of porosity change of surface soil on the real part of pore water stress Case 1

    图10图11给出了在工况1下,不同荷载频率下竖向位移实部和孔隙水应力实部随水平方向变化的曲线图。从图中可以看出,土体竖向位移和孔隙水应力幅值均随荷载频率的增大而增大,在低频(10 Hz~40 Hz)时竖向位移幅值随荷载频率增大的幅度较小,而在高频(70 Hz~100 Hz)情况下竖向位移幅值增长的幅度明显增大。孔隙水应力幅值的情况却正好相反,在低频时孔隙水应力幅值增长的幅度与高频情况下相比明显更大,随着荷载频率的增大,曲线两端呈现明显的波动性。

    图  10  工况1下荷载频率变化对竖向位移实部的影响
    Figure  10.  The influence of load frequency change on the real part of vertical displacement under Case 1
    图  11  工况1下荷载频率变化对孔隙水应力实部的影响
    Figure  11.  The influence of load frequency change on the real part of pore water stress under Case 1

    保持下层土剪切模量不变,图12图13是改变表层土模量时在工况4~工况8下竖向位移实部曲线和孔隙水应力实部曲线({\textit{z}} = 1\;{\text{m}})。与上软下硬地基情况相同,竖向位移幅值和孔隙水应力幅值均随表层土剪切模量的增大而减小。与图4图5作对比,在上硬下软地基中,随着表层土剪切模量逐渐减小,即地基趋向于均匀时(工况5),饱和冻土地基的动力响应逐渐增大。而在上软下硬地基中,随着地基趋向于均匀,即表层土剪切模量逐渐增大时(工况4),饱和冻土地基的动力响应却在逐渐减小。这表明软硬土层在地基土层中的排列次序对动力响应的影响很大,再一次说明层状饱和冻土地基的分层参数和地基土体的非均匀程度对地基的动力响应影响显著,增大表层土的剪切模量,可有效的减小地基的动力响应。

    图14图15是在工况8情况下表层土温度对竖向位移实部和孔隙水应力实部影响曲线。由图可知,竖向位移曲线与孔隙水应力曲线变化情况与上软下硬地基情况相同。结合图6图7,可以发现在两种不同工况条件下,上硬下软地基中竖向位移幅值和孔隙水应力幅值增长幅度小于上软下硬时的竖向位移幅值和孔隙水应力幅值增长幅度,即上软下硬地基中的竖向位移幅值和孔隙水应力对温度变化更敏感。

    图  12  工况5~工况8下表层土剪切模量变化对竖向位移实部的影响
    Figure  12.  The influence of shear modulus change of surface soil on the real part of vertical displacement under Case 5~Case 8
    图  13  工况5~工况8下表层土剪切模量变化对孔隙水应力实部的影响
    Figure  13.  The influence of shear modulus change of surface soil on the real part of pore water stress under Case 5~Case 8
    图  14  工况8下表层土温度变化对竖向位移实部的影响
    Figure  14.  The influence of surface soil temperature change on the real part of vertical displacement under Case 8
    图  15  工况8下表层土温度变化对孔隙水应力实部的影响
    Figure  15.  The influence of surface soil temperature change on the real part of pore water stress under Case 8

    图16图17是在工况8情况下表层土孔隙率对竖向位移实部和孔隙水应力实部影响曲线,其曲线变化规律与上软下硬地基情形时一致。竖向位移幅值在上软下硬和上硬下软两种地基工况下相差不大,但在相同孔隙率情况下,上软下硬地基的孔隙水应力远大于上硬下软地基时的孔隙水应力。

    图  16  工况8下表层土孔隙率变化对竖向位移实部的影响
    Figure  16.  The influence of porosity change of surface soil on the real part of vertical displacement under Case 8
    图  17  工况8下表层土孔隙率变化对孔隙水应力实部的影响
    Figure  17.  The influence of porosity change of surface soil on the real part of pore water stress under Case 8

    图18图19给出了在工况8下荷载频率对动力响应的影响曲线,竖向位移和孔隙水应力曲线随水平方向变化规律与上软下硬地基一致。在仅改变荷载频率的情况下,结合图10图11,可知上硬下软地基竖向位移幅值随荷载频率(f = 10 Hz~100 Hz)的变化与上软下硬地基相比更均匀,且其幅值在上硬下软地基中随荷载频率增长的幅度与上软下硬地基相比更大,但孔隙水应力幅值随荷载频率(f = 10 Hz~100 Hz)增长的幅度与上软下硬地基相比更小。

    图  18  工况8下荷载频率变化对竖向位移实部的影响
    Figure  18.  The influence of load frequency change on the real part of vertical displacement under Case 8
    图  19  工况8下荷载频率变化对孔隙水应力实部的影响
    Figure  19.  The influence of the change of amiable frequency on the real part of pore water stress under Case 8

    本文基于含孔隙固体介质多孔理论,利用传递矩阵法研究了简谐荷载作用下饱和冻土地基的动力响应问题,分析讨论了表层土剪切模量、表层土温度、表层孔隙率和荷载频率对上软下硬和上硬下软两种典型层状饱和冻土地基在{\textit{z}} = 1\;{\text{m}}处的竖向位移实部和孔隙水应力实部的影响规律。主要结论如下:

    (1)当简谐荷载作用于饱和冻土地基表面时,软硬土层在地基土中的排列次序对竖向位移和孔隙水应力均影响显著。竖向位移和孔隙水应力幅值在上软下硬和上硬下软地基中均随表层土剪切模量的增大而减小。当改变表层土剪切模量使上软下硬地基和上硬下软地基趋于均质地基时,上软下硬地基中的竖向位移和孔隙水应力曲线幅值逐渐减小,而上硬下软地基中的竖向位移和孔隙水应力幅值却逐渐增大。

    (2)在上软下硬和上硬下软地基中,竖向位移和孔隙水应力幅值随着表层土温度的升高而增大,表层土温度的改变对竖向位移影响不大,对孔隙水应力影响显著。上软下硬地基中的竖向位移和孔隙水应力对温度变化更敏感。

    (3)在上软下硬和上硬下软地基中,随着表层土孔隙率的增大,竖向位移和孔隙水应力幅值随之增大。在仅改变表层土孔隙率的情况下,竖向位移幅值在两种地基情况下相差不大。但在相同孔隙率情况下,上软下硬地基的孔隙水应力远大于上硬下软地基时的孔隙水应力。

    (4)竖向位移和孔隙水应力幅值在上软下硬地基和上硬下软地基中随着荷载频率的增大而增大。在上硬下软地基中,竖向位移幅值随荷载频率的增长幅度与上软下硬地基相比更大,而孔隙水应力幅值增长幅度与上软下硬地基相比更小。

    附录A:

    式(22)和式(28)中的{\beta _1}{\beta _2}{\beta _3}{\beta _4}{\beta _5}{\beta _6}取值如下:

    {\beta _1} = - {R_{11}}{R_{22}}{R_{33}} + {R_{11}}R_{23}^2 + R_{12}^2{R_{33}} - 2{R_{12}}{R_{13}}{R_{23}} + R_{13}^2{R_{22}} \text{,}
    {\beta }_{2} = -{A}_{11}{R}_{22}{R}_{33} + {A}_{11}{R}_{23}^{2} + 2{A}_{12}{R}_{12}{R}_{33} - 2{A}_{12}{R}_{13}{R}_{23} - 2{A}_{13}{R}_{12}{R}_{23} + 2{A}_{13}{R}_{13}{R}_{22} - {A}_{22}{R}_{11}{R}_{33} + {A}_{22}{R}_{13}^{2} + 2{A}_{23}{R}_{11}{R}_{23} - 2{A}_{23}{R}_{12}{R}_{13} - {A}_{33}{R}_{11}{R}_{22} + {A}_{33}{R}_{12}^{2},
    {\beta }_{3} = - {A}_{11}{A}_{22}{R}_{33} + 2{A}_{11}{A}_{23}{R}_{22} - {A}_{11}{A}_{33}{R}_{22} + {A}_{12}^{2}{R}_{33} - 2{A}_{12}{A}_{13}{R}_{23} - 2{A}_{12}{A}_{23}{R}_{13} + 2{A}_{12}{A}_{33}{R}_{12} + {A}_{13}^{2}{R}_{22} + 2{A}_{13}{A}_{22}{R}_{13} - 2{A}_{13}{A}_{23}{R}_{12} - {A}_{22}{A}_{33}{R}_{11} + {A}_{23}^{2}{R}_{11},
    \begin{split} & {\beta }_{4}=-{A}_{11}{A}_{22}{A}_{33}+{A}_{11}{A}_{23}^{2}+{A}_{12}^{2}{A}_{33}-2{A}_{12}{A}_{13}{A}_{23} +{A}_{13}^{2}{A}_{22}, {\beta _5} = - {\mu _{11}}{\mu _{33}}{B_{22}} + \mu _{13}^2{B_{22}} \text{,}\\& {\beta }_{6}=-{\mu }_{11}{B}_{22}{B}_{33}+{\mu }_{11}{B}_{23}{B}_{32}-{\mu }_{13}{B}_{12}{B}_{23}+{\mu }_{13}{B}_{13}{B}_{22}- {\mu }_{13}{B}_{21}{B}_{32}+{\mu }_{13}{B}_{22}{B}_{31}-{\mu }_{33}{B}_{11}{B}_{22}+{\mu }_{33}{B}_{12}{B}_{21}\text{,} \end{split}
    {\beta }_{7}=-{B}_{11}{B}_{22}{B}_{33}+{B}_{11}{B}_{23}{B}_{32}+{B}_{12}{B}_{21}{B}_{33}-{B}_{12}{B}_{23}{B}_{31} - {B}_{13}{B}_{21}{B}_{32}+{B}_{13}{B}_{22}{B}_{31}。

    式(24)和式(30)中的 \delta _{{\rm{p}}n}^{\rm{F}} \delta _{{\rm{p}}n}^{\rm{I}} \delta _{{\rm{s}}n}^{\rm{F}} \delta _{{\rm{s}}n}^{\rm{I}} 取值如下:

    \begin{split} & {\delta }_{{\rm{p}}n}^{\rm{F}} =\frac{\left({R}_{11}{R}_{23}- {R}_{12}{R}_{13}\right){d}_{n}^{2}+\left({A}_{11}{R}_{23}- {A}_{12}{R}_{13}- {A}_{13}{R}_{12}+ {A}_{23}{R}_{11}\right){d}_{n}+{A}_{11}{A}_{23}-{A}_{12}{A}_{13}}{\left(-{R}_{12}{R}_{23} +{R}_{13}{R}_{22}\right){d}_{n}^{2}+\left(-{A}_{12}{R}_{23} +{A}_{13}{R}_{22} +{A}_{22}{R}_{13} -{A}_{23}{R}_{12}\right){d}_{n}-{A}_{12}{A}_{23}+{A}_{13}{A}_{22}}\text{,} \\& \delta _{{\rm{p}}n}^{\rm{I}} = \frac{{\left( - {R_{11}}{R_{22}} + R_{12}^2 \right)d_n^2 + \left( - {A_{11}}{R_{22}} + 2{A_{12}}{R_{12}} - {A_{22}}{R_{11}} \right){d_n} - {A_{11}}{A_{22}} + A_{12}^2}}{{\left( - {R_{12}}{R_{23}} + {R_{13}}{R_{22}} \right)d_n^2 + \left( - {A_{12}}{R_{23}} + {A_{13}}{R_{22}} + {A_{22}}{R_{13}} - {A_{23}}{R_{12}} \right){d_n} - {A_{12}}{A_{23}} + {A_{13}}{A_{22}}}}\text{,}\\& \delta _{{\rm{s}}n}^{\rm{F}} = \frac{{\left( {{\mu _{11}}{t_n} + {B_{11}}} \right){B_{23}} - {B_{21}}\left( {{\mu _{13}}{t_n} + {B_{13}}} \right)}}{{ - {B_{23}}{B_{12}} + {B_{22}}\left( {{\mu _{13}}{t_n} + {B_{13}}} \right)}}\text{,} \delta _{{\rm{s}}n}^{\rm{I}} = \frac{{\left( { - {\mu _{11}}{t_n} + {B_{11}}} \right){B_{22}} - {B_{12}}{B_{21}}}}{{ - {B_{23}}{B_{12}} + {B_{22}}\left( {{\mu _{13}}{t_n} + {B_{13}}} \right)}}。 \end{split}

    附录B:

    \begin{split} & {C}_{n}=-{\rm{i}}\xi {r}_{n}(2{\mu }_{11}+{\mu }_{13}{\delta }_{{\rm{s}}n}^{\rm{I}} )(n=1、2) ,\\& {F}_{n}=-{\rm{i}}\xi {\lambda }_{n}(2{\mu }_{11}+{\mu }_{13}{\delta }_{{\rm{p}}n}^{\rm{I}} )(n=1、2、3) ,\\& {G}_{n}=-({r}_{n}{}^{2}+{\xi }^{2})\left({\mu }_{11}+\frac{1}{2}{\mu }_{13}{\delta }_{{\rm{s}}n}^{\rm{I}} \right)(n=1、2) ,\\& {H}_{n}=({R}_{12}+{R}_{22}{\delta }_{{\rm{p}}n}^{\rm{F}} +{R}_{23}{\delta }_{{\rm{p}}n}^{\rm{I}} )({\lambda }_{n}^{2}-{\xi }^{2})(n=1、2、3) ,\\& {I}_{n}=-{\rm{i}}\xi {r}_{n}({\mu }_{13}+2{\mu }_{33}{\delta }_{{\rm{s}}n}^{\rm{I}} )(n=1、2) ,\\& {J}_{n}=-{\rm{i}}\xi {\lambda }_{n}(2{\mu }_{33}{\delta }_{{\rm{p}}n}^{\rm{I}} +{\mu }_{13})(n=1、2、3) ,\\& {P}_{n}=-({r}_{n}^{2}+{\xi }^{2})\left({\mu }_{33}{\delta }_{{\rm{s}}n}^{\rm{I}} +\frac{1}{2}{\mu }_{13}\right)(n=1、2) 。 \end{split}

    矩阵[S]中各元素为:

    \begin{split} & {S_{0101}} = {S_{0106}} = {\chi _1},{S_{0102}} = {S_{0107}} = {\chi _2},\\& {S_{0103}} = {S_{0108}} = {\chi _3}, {S_{0104}} = - {S_{0109}} = {C_1},\\& {S_{0105}} = - {S_{0110}} = {C_2},{S_{0201}} = - {S_{0206}} = {F_1},\\& {S_{0202}} = - {S_{0207}} = {F_2},{S_{0203}} = - {S_{0208}} = {F_3},\\& {S_{0204}} = {S_{0209}} = {G_1}, {S_{0205}} = {S_{0210}} = {G_2},\\& {S_{0301}} = {S_{0306}} = {H_1},{S_{0302}} = {S_{0307}} = {H_2},\\& {S_{0303}} = {S_{0308}} = {H_3},{S_{0304}} = {S_{0305}} = {S_{0309}} = {S_{0310}} = 0, \end{split}
    \begin{split} & {S_{0401}} = {S_{0406}} = {\alpha _1}, {S_{0402}} = {S_{0407}} = {\alpha _2},\\& {S_{0403}} = {S_{0408}} = {\alpha _3},{S_{0404}} = - {S_{0409}} = {I_1},\\& {S_{0405}} = - {S_{0410}} = {I_2},{S_{0501}} = - {S_{0506}} = {J_1},\\& {S_{0502}} = - {S_{0507}} = {J_2}, {S_{0503}} = - {S_{0508}} = {J_3},\\& {S_{0504}} = {S_{0509}} = {P_1},{S_{0505}} = {S_{0510}} = {P_2}, \\& {S_{0601}} = {S_{0602}} = {S_{0603}} = {S_{0606}} = {S_{0607}} = {S_{0608}} = {\rm{i}}\xi , \\& {S_{0604}} = - {S_{0609}} = {r_1} , {S_{0605}} = - {S_{0610}} = {r_2} ,\\& {S_{0701}} = - {S_{0706}} = - {\lambda _1},{S_{0702}} = - {S_{0707}} = - {\lambda _2} ,\\& {S_{0703}} = - {S_{0708}} = - {\lambda _3}, {S_{0704}} = {S_{0705}} = {S_{0709}} = {S_{0710}} = {\rm{i}}\xi , \\& {S_{0801}} = - {S_{0806}} = - {\lambda _1}\delta _{{\rm{p}}1}^{\rm{F}},{S_{0802}} = - {S_{0807}} = - {\lambda _2}\delta _{{\rm{p}}2}^{\rm{F}},\\& {S_{0803}} = - {S_{0808}} = - {\lambda _3}\delta _{{\rm{p}}3}^{\rm{F}},{S_{0804}} = {S_{0809}} = {\rm{i}}\xi \delta _{{\rm{s}}1}^{\rm{F}},\\& {S_{0805}} = {S_{0810}} = {\rm{i}}\xi \delta _{{\rm{s}}2}^{\rm{F}}, {S_{0901}} = {S_{0906}} = {\rm{i}}\xi \delta _{{\rm{p}}1}^{\rm{I}},\\& {S_{0902}} = {S_{0907}} = {\rm{i}}\xi \delta _{{\rm{p}}2}^{\rm{I}},{S_{0903}} = {S_{0908}} = {\rm{i}}\xi \delta _{{\rm{p}}3}^{\rm{I}},\\& {S_{0904}} = - {S_{0909}} = {r_1}\delta _{{\rm{s}}1}^{\rm{I}},{S_{0905}} = - {S_{0910}} = {r_2}\delta _{{\rm{s}}2}^{\rm{I}},\\& {S_{1001}} = - {S_{1006}} = - {\lambda _1}\delta _{{\rm{p}}1}^{\rm{I}}, {S_{1002}} = - {S_{1007}} = - {\lambda _2}\delta _{{\rm{p}}2}^{\rm{I}},\\& {S_{1003}} = - {S_{1008}} = - {\lambda _3}\delta _{{\rm{p}}3}^{\rm{I}}\quad ,{S_{1004}} = {S_{1009}} = {\rm{i}}\xi \delta _{{\rm{s}}1}^{\rm{I}},\\& {S_{1005}} = {S_{1010}} = {\rm{i}}\xi \delta _{{\rm{s}}2}^{\rm{I}} 。 \end{split}

    附录C:

    支撑刚度矩阵[{{\boldsymbol{M}}^1}]中的各元素为:

    \begin{split} & M_{0101}^1 = M_{0106}^1 = \chi _1^1\text{,}M_{0102}^1 = M_{0107}^1 = \chi _2^1\text{,}\\& M_{0103}^1 = M_{0108}^1 = \chi _3^1\text{,}M_{0104}^1 = - M_{0109}^1 = C_1^1\text{,}\\& M_{0105}^1 = - M_{0110}^1 = C_2^1\text{,}M_{0201}^1 = - M_{0206}^1 = F_1^1\text{,}\\& M_{0202}^1 = - M_{0207}^1 = F_2^1\text{,}M_{0203}^1 = - M_{0208}^1 = F_3^1\text{,}\\& M_{0204}^1 = M_{0209}^1 = G_1^1\text{,}M_{0205}^1 = M_{0210}^1 = G_2^1\text{,}\\& M_{0301}^1 = M_{0306}^1 = H_1^1\text{,}M_{0302}^1 = M_{0307}^1 = H_2^1\text{,}\\& M_{0303}^1 = M_{0308}^1 = H_3^1\text{,}M_{0304}^1 = M_{0305}^1 = M_{0309}^1 = M_{0310}^1 = 0\text{,}\\& M_{0401}^1 = M_{0406}^1 = \alpha _1^1\text{,}M_{0402}^1 = M_{0407}^1 = \alpha _2^1\text{,}\\& M_{0403}^1 = M_{0408}^1 = \alpha _3^1\text{,}M_{0404}^1 = - M_{0409}^1 = I_1^1,\\& M_{0405}^1 = - M_{0410}^1 = I_2^1\text{,} L_{0501}^1 = - L_{0506}^1 = J_1^1 \text{,}\\& M_{0502}^1 = - M_{0507}^1 = J_2^1 \text{,} M_{0503}^1 = - M_{0508}^1 = J_3^1 \text{,}\\& M_{0504}^1 = M_{0509}^1 = P_1^1 \text{,} M_{0505}^1 = M_{0510}^1 = P_2^1 \text{,} \end{split}
    \begin{split} & M_{0101}^N = M_{0102}^N = M_{0103}^N = M_{0106}^N = M_{0107}^N = M_{0108}^N = {\rm{i}}\xi \text{,} \\& M_{0104}^N = - M_{0109}^N = r_1^N \text{,} M_{0105}^N = - M_{0110}^N = r_2^N 。 \end{split}

    支撑刚度矩阵[{{\boldsymbol{M}}^N}]中的各元素为:

    \begin{split} & M_{0101}^N = M_{0102}^N = M_{0103}^N = M_{0106}^N = M_{0107}^N = M_{0108}^N = {\rm{i}}\xi ,\;\\& M_{0104}^N = - M_{0109}^N = r_1^N,\; M_{0105}^N = - M_{0110}^N = r_2^N,\;M_{0201}^N = - M_{0206}^N = - \lambda _1^N,\;\\& M_{0202}^N = - M_{0207}^N = - \lambda _2^N,\;M_{0207}^N = - M_{0208}^N = - \lambda _3^N,\;\\& M_{0204}^N = M_{0205}^N = M_{0209}^N = M_{0210}^N = {\rm{i}}\xi ,\;M_{0301}^N = - M_{0306}^N = - \lambda _1^N\delta _{{\rm{p}}1}^{{{\rm{F}}^N}},\;\\& M_{0302}^N = - M_{0307}^N = - \lambda _2^N\delta _{{\rm{p}}2}^{{{\rm{F}}^N}},\;M_{0303}^N = - M_{0308}^N = - \lambda _3^N\delta _{{\rm{p}}3}^{{{\rm{F}}^N}},\;\\& M_{0304}^N = M_{0309}^N = {\rm{i}}\xi \delta _{{\rm{s}}1}^{{{\rm{F}}^N}},\;M_{0305}^N = M_{0310}^N = {\rm{i}}\xi \delta _{{\rm{s}}2}^{{{\rm{F}}^N}},\;\\& M_{0401}^N = M_{0406}^N = {\rm{i}}\xi \delta _{{\rm{p}}1}^{{{\rm{I}}^N}},\;M_{0402}^N = M_{0407}^N = {\rm{i}}\xi \delta _{{\rm{p}}2}^{{{\rm{I}}^N}},\;\\& M_{0403}^N = M_{0408}^N = {\rm{i}}\xi \delta _{{\rm{p}}3}^{{{\rm{I}}^N}},\;M_{0404}^N = M_{0409}^N = r_1^N\delta _{{\rm{s}}1}^{{{\rm{I}}^N}},\;\\& M_{0405}^N = M_{0410}^N = r_2^N\delta _{{\rm{s}}1}^{{{\rm{I}}^N}},\;M_{0501}^N = - M_{0506}^N = - \lambda _1^N\delta _{{\rm{p}}1}^{{{\rm{I}}^N}},\;\\& M_{0502}^N = - M_{0507}^N = - \lambda _2^N\delta _{{\rm{p}}2}^{{{\rm{I}}^N}},\;M_{0503}^N = - M_{0508}^N = - \lambda _3^N\delta _{{\rm{p}}3}^{{{\rm{I}}^N}},\;\\& M_{0504}^N = M_{0509}^N = {\rm{i}}\xi \delta _{{\rm{s}}1}^{{{\rm{I}}^N}},\;M_{0505}^N = M_{0510}^N = {\rm{i}}\xi \delta _{{\rm{s}}2}^{{{\rm{I}}^N}}。 \end{split}
  • 图  1   简谐荷载作用在成层饱和冻土地基示意图

    Figure  1.   The schematic diagram of harmonic load acting on layered saturated frozen soil foundation

    图  2   本文退化解与TABATABAIE等[32]解的对比验证

    Figure  2.   The comparison and verification between the solution of this paper and the solution of TABATABAIE et al[32]

    图  3   本文退化解与袁聚云等[33]解的对比验证

    Figure  3.   The comparison and verification between the solution of this paper and the solution of YUAN Juyun et al[33]

    图  4   工况1~工况4下表层土剪切模量变化对竖向位移实部的影响

    Figure  4.   The influence of shear modulus change of surface soil on the real part of vertical displacement under Case 1~ Case 4

    图  5   工况1~工况4下表层土剪切模量变化对孔隙水应力实部的影响

    Figure  5.   The influence of shear modulus change of surface soil on the real part of pore water stress under Case 1~ Case 4

    图  6   工况1下表层土温度变化对竖向位移实部的影响

    Figure  6.   The influence of surface soil temperature change on the real part of vertical displacement under Case 1

    图  7   工况1下表层土温度变化对孔隙水应力实部的影响

    Figure  7.   The influence of surface soil temperature change on the real part of pore water stress under Case 1

    图  8   工况1下表层土孔隙率变化对竖向位移实部的影响

    Figure  8.   The influence of porosity change of surface soil on the real part of vertical displacement under Case 1

    图  9   工况1下表层土孔隙率变化对孔隙水应力实部的影响

    Figure  9.   The influence of porosity change of surface soil on the real part of pore water stress Case 1

    图  10   工况1下荷载频率变化对竖向位移实部的影响

    Figure  10.   The influence of load frequency change on the real part of vertical displacement under Case 1

    图  11   工况1下荷载频率变化对孔隙水应力实部的影响

    Figure  11.   The influence of load frequency change on the real part of pore water stress under Case 1

    图  12   工况5~工况8下表层土剪切模量变化对竖向位移实部的影响

    Figure  12.   The influence of shear modulus change of surface soil on the real part of vertical displacement under Case 5~Case 8

    图  13   工况5~工况8下表层土剪切模量变化对孔隙水应力实部的影响

    Figure  13.   The influence of shear modulus change of surface soil on the real part of pore water stress under Case 5~Case 8

    图  14   工况8下表层土温度变化对竖向位移实部的影响

    Figure  14.   The influence of surface soil temperature change on the real part of vertical displacement under Case 8

    图  15   工况8下表层土温度变化对孔隙水应力实部的影响

    Figure  15.   The influence of surface soil temperature change on the real part of pore water stress under Case 8

    图  16   工况8下表层土孔隙率变化对竖向位移实部的影响

    Figure  16.   The influence of porosity change of surface soil on the real part of vertical displacement under Case 8

    图  17   工况8下表层土孔隙率变化对孔隙水应力实部的影响

    Figure  17.   The influence of porosity change of surface soil on the real part of pore water stress under Case 8

    图  18   工况8下荷载频率变化对竖向位移实部的影响

    Figure  18.   The influence of load frequency change on the real part of vertical displacement under Case 8

    图  19   工况8下荷载频率变化对孔隙水应力实部的影响

    Figure  19.   The influence of the change of amiable frequency on the real part of pore water stress under Case 8

    表  1   饱和冻土地基的物理力学参数[29]

    Table  1   Physical and mechanical parameters of saturated frozen soil foundation

    参数 土颗粒
    体变模量
    {K_{\mathrm{S} }} /GPa
    冰颗粒
    体变模量
    {K_{\rm{I}}} /GPa
    流体
    体变模量
    {K_{\rm{F}}} /GPa
    土颗粒密度
    {\rho _{\rm{S}}} /(kg/m3)
    冰颗粒
    密度
    {\rho _{\rm{I}}} /(kg/m3)
    量值 20.9 8.58 2.25 2580 920
    参数 流体密度
    {\rho _{\rm{F}}} /(kg/m3)
    流体动力
    粘滞系数
    {\eta _{\rm{F}}} /(kg/m·s)
    冰颗粒
    剪切模量
    {\mu _{\rm{I}}} /GPa
    土骨架
    渗透系数
    参考值
    {\kappa _{\rm{S0}}} /m2
    冰渗透
    系数参考值
    {\kappa _{\rm{I0}}} /m2
    量值 1.8×10−3 3.32 1.0×10−11 5.0×10−5 1000
    下载: 导出CSV
  • [1]

    THOMSON W T. Transmission of elastic waves through a stratified solid medium [J]. Journal of Applied Physics, 1950, 21(2): 89 − 93. doi: 10.1063/1.1699629

    [2]

    AI Z Y, ZHANG Y F. Plane strain dynamic response of a transversely isotropic multilayered half-plane [J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 211 − 219. doi: 10.1016/j.soildyn.2015.04.010

    [3]

    YANG L Q, GUO C C, CAO D F, et al. Analysis of dynamic response of two-dimensional orthotropic layered media with imperfect interfaces between layers [J]. Applied Mathematical Modelling, 2022, 101: 171 − 194. doi: 10.1016/j.apm.2021.07.033

    [4] 王妍, 林皋, 李志远. 移动荷载下各向异性层状地基-柔性路面结构动力响应的半解析解[J]. 工程力学, 2023, 40(12): 1 − 12. doi: 10.6052/j.issn.1000-4750.2022.02.0156

    WANG Yan, LIN Gao, LI Zhiyuan, et al. Semi-analytical solution for dynamic response of anisotropic layered foundation-flexible pavement structure under moving loads [J]. Engineering Mechanics, 2023, 40(12): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.02.0156

    [5]

    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168 − 178. doi: 10.1121/1.1908239

    [6]

    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179 − 191. doi: 10.1121/1.1908241

    [7]

    BIOT M A. Mechanics of deformation and acoustic propagation in porous media [J]. Journal of Applied Physics, 1962, 33(4): 1482 − 1498. doi: 10.1063/1.1728759

    [8]

    LIU T Y, ZHAO C B. Dynamic analyses of multilayered poroelastic media using the generalized transfer matrix method [J]. Soil Dynamics and Earthquake Engineering, 2013, 48: 15 − 24. doi: 10.1016/j.soildyn.2012.12.006

    [9] 周凤玺, 赖远明. 条形荷载作用下梯度饱和土的动力响应分析[J]. 岩土力学, 2013, 34(6): 1723 − 1730.

    ZHOU Fengxi, LAI Yuanming. Dynamic response analysis of graded fluid-saturated soil under strip load [J]. Rock and Soil Mechanics, 2013, 34(6): 1723 − 1730. (in Chinese)

    [10] 郭颖, 熊春宝, 虞跨海. 基于分数阶理论考虑渗透系数各向异性饱和弹性地基热-水-力耦合动力响应[J/OL]. 工程力学, 2023, 1-12. http://kns.cnki.net/kcms/detail/11.2595.o3.20231124.1106.002.html, 2023-11-28.

    GUO Ying, XIONG Chunbao, YU Kuahai. The coupled thermo-hydro-mechanical dynamic response of saturated porous subgrade considering permeability anisotropy based on fractional order theory [J/OL]. Engineering Mechanics, 2023, 1-12. http://kns.cnki.net/kcms/detail/11.2595.o3.20231124.1106.002.html, 2023-11-28. (in Chinese)

    [11]

    POOLADI A, RAHIMIAN M, PAK R Y S. Poroelastodynamic potential method for transversely isotropic fluid-saturated poroelastic media [J]. Applied Mathematical Modelling, 2017, 50: 177 − 199. doi: 10.1016/j.apm.2017.05.032

    [12]

    AI Z Y, WANG L H. Layer-element analysis of multilayered saturated soils subject to axisymmetric vertical time-harmonic excitation [J]. Applied Mathematics and Mechanics, 2017, 38(9): 1295 − 1312. doi: 10.1007/s10483-017-2241-8

    [13]

    SENJUNTICHAI T, KEAWSAWASVONG S, PLANGMAL R. Three-dimensional dynamic response of multilayered poroelastic media [J]. Marine Georesources & Geotechnology, 2019, 37(4): 424 − 437.

    [14] 丁海滨, 管凌霄, 童立红, 等. 基于非局部Biot理论的循环荷载下饱和土地基动力特性研究[J]. 工程力学, 2023, 40(3): 141 − 152. doi: 10.6052/j.issn.1000-4750.2021.09.0712

    DING Haibin, GUAN Lingxiao, TONG Lihong, et al. On investigating the dynamic characteristics of saturated soil foundation subjected to cyclic load based on nonlocal Biot theory [J]. Engineering Mechanics, 2023, 40(3): 141 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.09.0712

    [15]

    YE Z, AI Z Y. Dynamic analysis of multilayered unsaturated poroelastic media subjected to a vertical time-harmonic load [J]. Applied Mathematical Modelling, 2021, 90: 394 − 412. doi: 10.1016/j.apm.2020.09.006

    [16] 马强, 黄业禹, 周凤玺, 等. 基于TRM法的移动荷载作用下层状非饱和土地基动力响应研究[J/OL]. 工程力学, 2023, 1-11. http://kns.cnki.net/kcms/detail/11.2595.O3.20230411.1654.002.html, 2023-04-12.

    MA Qiang, HUANG Yeyu, ZHOU Fengxi, et al. Dynamic response study of layered unsaturated foundation under moving load based on TRM method [J/OL]. Engineering Mechanics, 2023, 1-11. http://kns.cnki.net/kcms/detail/11.2595.O3.20230411.1654.002.html, 2023-04-12. (in Chinese)

    [17] 施力维, 马强, 舒进辉. 条形荷载下梯度非均匀非饱和土的动力响应分析[J]. 力学学报, 2022, 54(7): 2008 − 2018.

    SHI Liwei, MA Qiang, SHU Jinhui. Dynamic responses of graded non-homogeneous unsaturated soils under a strip load [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2008 − 2018. (in Chinese)

    [18]

    LECLAIRE P, COHEN-TÉNOUDJI F, AGUIRRE-PUENTE J. Extension of Biot's theory of wave propagation to frozen porous media [J]. The Journal of the Acoustical Society of America, 1994, 96(6): 3753 − 3768. doi: 10.1121/1.411336

    [19]

    LECLAIRE P, COHEN-TÉNOUDJI F, AGUIRRE-PUENTE J. Observation of two longitudinal and two transverse waves in a frozen porous medium [J]. The Journal of the Acoustical Society of America, 1995, 97(4): 2052 − 2055. doi: 10.1121/1.411997

    [20]

    CARCIONE J M, GUREVICH B, CAVALLINI F. A generalized Biot–Gassmann model for the acoustic properties of shaley sandstones [J]. Geophysical Prospecting, 2000, 48(3): 539 − 557. doi: 10.1046/j.1365-2478.2000.00198.x

    [21]

    CARCIONE J M, SANTOS J E, RAVAZZOLI C L, et al. Wave simulation in partially frozen porous media with fractal freezing conditions [J]. Journal of Applied Physics, 2003, 94(12): 7839 − 7847. doi: 10.1063/1.1606861

    [22]

    CARCIONE J M, SERIANI G. Wave simulation in frozen porous media [J]. Journal of Computational Physics, 2001, 170(2): 676 − 695. doi: 10.1006/jcph.2001.6756

    [23]

    LI Q, SHU W L, CAO L, et al. Vertical vibration of a single pile embedded in a frozen saturated soil layer [J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 185 − 195. doi: 10.1016/j.soildyn.2019.03.032

    [24]

    CAO L, ZHOU B, LI Q, et al. Vertically dynamic response of an end-bearing pile embedded in a frozen saturated porous medium under impact loading [J]. Shock and Vibration, 2019, 2019: 8983128.

    [25]

    CHEN C, WANG Z Q, WU W B, et al. Semi-analytical solution for the vertical vibration of a single pile embedded in a frozen poroelastic half-space [J]. Applied Sciences, 2023, 13(3): 1508. doi: 10.3390/app13031508

    [26] 蒋汇鹏, 马强, 曹亚鹏. P波在弹性介质与饱和冻土介质分界面上的透反射问题研究[J]. 岩土力学, 2023, 44(3): 916 − 929.

    JIANG Huipeng, MA Qiang, CAO Yapeng. Study on the reflection and transmission of P wave on the interface between elastic medium and saturated frozen soil medium [J]. Rock and Soil Mechanics, 2023, 44(3): 916 − 929. (in Chinese)

    [27] 蒋汇鹏, 马强, 邵生俊, 等. 平面S波在弹性介质与饱和冻土介质分界面上的能量传输特性[J]. 岩石力学与工程学报, 2023, 42(4): 976 − 992.

    JIANG Huipeng, MA Qiang, SHAO Shengjun, et al. Characteristic of energy transmission of plane-S-wave at interface between elastic medium and saturated frozen soil medium [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 976 − 992. (in Chinese)

    [28] 周凤玺, 赖远明. 饱和冻土中弹性波的传播特性[J]. 岩土力学, 2011, 32(9): 2669 − 2674.

    ZHOU Fengxi, LAI Yuanming. Propagation characteristics of elastic wave in saturated frozen soil [J]. Rock and Soil Mechanics, 2011, 32(9): 2669 − 2674. (in Chinese)

    [29] 仇浩淼, 夏唐代, 郑晴晴, 等. 饱和冻土中弹性体波传播特性影响参数研究[J]. 岩土力学, 2018, 39(11): 4053 − 4062.

    QIU Haomiao, XIA Tangdai, ZHENG Qingqing, et al. Parametric studies of body waves propagation in saturated frozen soil [J]. Rock and Soil Mechanics, 2018, 39(11): 4053 − 4062. (in Chinese)

    [30] 仇浩淼. 含孔隙固体多孔介质中弹性波的传播特性研究[D]. 杭州: 浙江大学, 2019.

    QIU Haomiao. Research on propagation characteristics of elastic waves in Biot-type three-phase medium [D]. Hangzhou: Zhejiang University, 2019. (in Chinese)

    [31] 周斌. 冻土地区地基表面地震动及瑞利波传播特性研究[D]. 舟山: 浙江海洋大学, 2020.

    ZHOU Bin. Study on ground motion and Rayleigh wave propagation characteristics in frozen soil area [D]. Zhoushan: Zhejiang Ocean University, 2020. (in Chinese)

    [32]

    TABATABAIE YAZDI J, VALLIAPPAN S, ZHAO C B. Analytical and numerical solutions for wave propagation in water-saturated porous layered half-space [J]. Soil Dynamics and Earthquake Engineering, 1994, 13(4): 249 − 257. doi: 10.1016/0267-7261(94)90029-9

    [33] 袁聚云, 赵锡宏. 竖向线荷载和条形均布荷载作用在地基内部时的土中应力公式[J]. 上海力学, 1999(2): 156 − 165.

    YUAN Juyun, ZHAO Xihong. Formulus for calculating stresses in soil subjecting to vertical line load and strip distributed load beneath the surface of ground [J]. Chinese Quarterly of Mechanics, 1999(2): 156 − 165. (in Chinese)

    [34]

    PARK J, KWON O S, DI SARNO L. Influence of seasonal soil temperature variation and global warming on the seismic response of frozen soils in permafrost regions [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(14): 3855 − 3871.

图(19)  /  表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  12
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2024-01-02
  • 网络出版日期:  2024-01-18

目录

/

返回文章
返回