Processing math: 0%

圆形五边形三四撑杆混合型开口索穹顶预应力态及多参数敏感度分析

吕辉, 宋潮浪, 董石麟, 刘德旺, 陶义雅

吕辉, 宋潮浪, 董石麟, 刘德旺, 陶义雅. 圆形五边形三四撑杆混合型开口索穹顶预应力态及多参数敏感度分析[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.07.0482
引用本文: 吕辉, 宋潮浪, 董石麟, 刘德旺, 陶义雅. 圆形五边形三四撑杆混合型开口索穹顶预应力态及多参数敏感度分析[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.07.0482
LYU Hui, SONG Chaolang, DONG Shilin, LIU Dewang, TAO Yiya. ANALYSIS OF PRESTRESSING MODE AND MULTI-PARAMETER SENSITIVITY OF CIRCULAR PENTAGONAL THREE-FOUR-STRUT ALTERNATED CABLE DOME WITH INNER HOLE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.07.0482
Citation: LYU Hui, SONG Chaolang, DONG Shilin, LIU Dewang, TAO Yiya. ANALYSIS OF PRESTRESSING MODE AND MULTI-PARAMETER SENSITIVITY OF CIRCULAR PENTAGONAL THREE-FOUR-STRUT ALTERNATED CABLE DOME WITH INNER HOLE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.07.0482

圆形五边形三四撑杆混合型开口索穹顶预应力态及多参数敏感度分析

基金项目: 国家自然科学基金(52268031);国家土建结构预制装配化工程技术研究中心沈祖炎专项基金(2021CPCCE-K04)
详细信息
    作者简介:

    吕 辉(1982−),男,江西上饶人,副教授,博士,硕导,主要从事空间结构研究(E-mail: lvhui@nchu.edu.cn)

    董石麟(1932−),男,浙江杭州人,教授,博士,博导,中国工程院院士,长期从事空间结构教学、科研工作(E-mail: kjjgzz@163.com)

    刘德旺(1999−),男,湖北武汉人,硕士生,主要从事空间结构研究(E-mail: 2111085900023@stu.nchu.edu.cn)

    陶义雅(1999−),女,浙江金华人,硕士生,主要从事空间结构研究(E-mail: 2111081400007@stu.nchu.edu.cn)

    通讯作者:

    宋潮浪(1998−),男,江西宜春人,硕士生,主要从事空间结构研究(E-mail: 2111085900021@stu.nchu.edu.cn)

  • 中图分类号: TU394

ANALYSIS OF PRESTRESSING MODE AND MULTI-PARAMETER SENSITIVITY OF CIRCULAR PENTAGONAL THREE-FOUR-STRUT ALTERNATED CABLE DOME WITH INNER HOLE

  • 摘要:

    五边形三四撑杆混合型索穹顶构形具有如下特点:首先是在上弦脊索处采用了任意等腰五边形的网格; 其次是有别于早期Fuller的传统张拉整体思想,改为在上下弦节点间设有多根倾斜的撑杆,这使得在上弦网格扩大的同时,也提高了整体结构的稳定性。根据节点平衡条件,提出了五边形三四撑杆混合型开口索穹顶结构预应力态的简捷分析方法,并给出其全套预应力态索杆内力一般性计算公式,可以方便地计算出精确解;围绕结构的下弦环索道数、矢跨比、厚跨比、下弦节点水平半径系数等参数计算了60个算例,分析研究了不同参数对索穹顶预张力分布的影响。多参数灵敏度分析结果表明,矢跨比对结构预张力分布影响较小,而预张力分布对厚跨比、下弦环索道数、下弦节点水平半径系数和上弦网格系数较为敏感,在进行结构设计时应着重考虑。本文的研究为索穹顶结构的选型和设计提供了新的方案。

    Abstract:

    The structural configuration of pentagonal three-four-strut alternated cable dome has the following characteristics: firstly, an arbitrary isosceles pentagonal grid is used at the ridge of upper chord; secondly, it is different from the traditional tension integral conception of Fuller, in which there are inclined multi-strut at the upper and lower chord nodes, which expands the upper chord grid and improves the stability of the overall structure. According to the joint equilibrium equation, a simple method for calculating the prestressing mode of pentagonal three-four-strut alternated cable dome is proposed with inner hole, and the general calculation formula of internal force of prestressed cable strut is derived. The formula calculation generates exact solutions. Calculations of 60 cases are carried out for different parameters of the structure, such as the number of lower chord ring cables, rise-span ratio, position of lower chord nodes and structural thickness adjustment coefficient, and the effects of different parameters on the pretension distribution of cable dome are discussed. The results of multi-parameter sensitivity analysis show that the prestressing distribution of the structure is not sensitive to the rise-to-span ratio, while the thickness-to-span ratio, the number of lower chord loops and the horizontal radius coefficient of the lower chord nodes have a greater influence and should be considered when designing the structure. The study of this paper provides a new scheme for the selection and design of cable dome.

  • 20世纪80年代,GEIGER[1]在Fuller张拉整体思想进行了演进,提出了GEIGER型索穹顶,并实现了张拉整体思想在工程实践中的首次应用。在此之后,LEVY[2]改用联方型脊索网格针对GEIGER型索穹顶结构力学性能不足的问题进行改良,提出了LEVY型索穹顶,并在亚特兰大奥运会主体育场佐治亚穹顶上成功应用,展现了索穹顶结构卓越的力学性能和优异的经济指标。

    由于索穹顶结构轻质高效、经济美观的优势为人们所发掘,同时应于国内对大跨度空间结构的需求,我国自上世纪90年代对其开展了大量研究。内蒙古伊旗全民健身体育中心是国内首个大跨度索穹顶结构,张爱林等对其进行了细致的体系设计研究[34]。针对传统索穹顶构造形式单一和力学性能不足的问题,国内学者提出了Kiewitt型、葵花序列、鸟巢序列、蜂窝序列、鼓蜂窝序列、新型脊杆环撑索穹顶、星形四面体型索穹顶、空间三撑杆双环索索穹顶等多撑杆型索穹顶的构形及预应力态的计算分析方法[519]。在预应力态的计算分析方法方面,国际学者在张拉整体结构的找形找力上进行了更为深入的探索,如利用优化算法[2021]、智能算法[2223]、对称性[2425]等实现结构的高效找形找力。继闫翔宇等[26]提出的“Levy + Geiger”的复合式索穹顶方案在天津理工大学体育馆成功应用后,复合式索穹顶结构自此在国内兴起。近年来国内还建成“葵花+肋环”的雅安天全体育馆[27]和“葵花+内环桁架”大开口型索穹顶的成都凤凰山体育公园足球场[28]

    多撑杆型的空间布置可以减少拉索的数量,便于索穹顶张拉施工成形和改善结构受力性能[29]。受复合式索穹顶方案的启发,针对目前组合形式多撑杆型索穹顶结构研究较少的情况,也是为了进一步研究多撑杆型索穹顶结构性能,本文提出了一种五边形三四撑杆混合型索穹顶,根据节点平衡方程,详细推导了开口索穹顶全套预应力态索杆内力的一般计算公式,对多种几何参数的索穹顶还给出了索杆预应力的简捷计算方法、计算用表和算例分析,以便认识该种索穹顶预应力态的索杆内力分布规律、受力特性和预张力分布对不同参数的敏感度。本文的研究成果可为工程设计提供参考依据,为索穹顶结构的选型提供了新策略。

    五边形三四撑杆混合型索穹顶由上弦五边形脊索、撑杆、斜索、下弦环索和上弦内环索组成。其中,上弦脊索T和上弦内环索N由粗实线表示,撑杆V、斜索B、下弦环索H分别由点线、点划线、虚线表示,结构示意图如图1所示。其上弦构形为自索穹顶内孔向外正、倒置交替布设五边形网格脊索,以及交于下弦节点的撑杆、斜索和环索组合而成,其中四撑杆与三撑杆交替布置,最外圈为三撑杆,径向各榀上弦网格之间通过上弦内环索相连,外周边设有刚性环梁(图1黑色粗实线),下弦节点之间通过下弦环索相连,形成闭合的结构构形。

    图  1  五边形三四撑杆混合型开口索穹顶平面图及剖面示意图
    Figure  1.  Plan and cross-section of pentagonal three-four-strut alternated cable dome with inner hole

    图1所示,上弦节点根据与五边形网格主径向线夹角不同划分为a、b两类上弦节点,j为边界上弦节点编号。kl分别表示除索穹顶内圈(奇数圈为一圈,偶数圈为两圈)外五边形四撑杆网格和五边形三撑杆网格所在圈数编号,表达式如下(式中i为计算圈数):

    k={ceil(i12)×2,(i (1)
    l=\left\{\begin{aligned} & 3+\mathrm{\rm{floor}}\left(\frac{i-3}{2}\right)\times 2,\;\;(i{\geqslant} \text{2},m为奇数)\\& 4+\mathrm{\rm{floor}}\left(\frac{i-3}{2}\right)\times 2,\;\;(i{\geqslant} \text{3},m为偶数) \end{aligned}\right. (2)

    奇、偶数圈索穹顶因结构构形上有差异,以下均分开论述。现以图1圆形平面开口索穹顶为例,不计刚性外环梁,整个索穹顶的节点总数T和杆件总数M可分别表示为:

    T = \frac{n}{2} \times \left(\left({\rm{floor}} \left(\frac{m}{2}\right) + 1\right) \times 2 + m + {\rm{ceil}} \left(\frac{m}{2}\right) + m)\right) (3)

    m为奇数:

    \begin{split} M = &\frac{n}{2} \times \Bigg(5m - {\rm{floor}} \left(\frac{{m - 1}}{2}\right) \times 1 - 1 + {\rm{ceil}} \left(\frac{m}{2}\right) \times {\text{3}} + \\& \left(m - {\rm{ceil}} \left(\frac{m}{2}\right)\right) \times {\text{4}} + {\rm{ceil}} \left(\frac{m}{2}\right) \times {\text{2}} + \\& \left(m - {\rm{ceil}} \left(\frac{m}{2}\right)\right) \times {\text{1}} + m\Bigg) \end{split} (4)

    m为偶数:

    \begin{split} M = &\frac{n}{2} \times \Bigg(5m - {\rm{floor}} \left(\frac{{m - 1}}{2}\right) \times 1 - 1 + {\rm{ceil}} \left(\frac{m}{2}\right) \times 4 +\\& \left(m - {\rm{ceil}} \left(\frac{m}{2}\right)\right) \times 3 + {\rm{ceil}} \left(\frac{m}{2}\right) \times 1 +\\& \left(m - {\rm{ceil}} \left(\frac{m}{2}\right)\right) \times 2 + m\Bigg) \end{split} (5)

    式中:n为环向划分数;m为环索数;floor函数用于求不大于给定实数的最大整数;ceil函数用于求不小于给定实数的最小整数。

    为了便于表述,对于五边形三四撑杆混合型索穹顶结构可采用带3个下标的字母nFms表示。如图1所示的索穹顶,当m为3和4时,可分别表示为24F3(3,4)24F4(3,4),分别表示该索穹顶为24边形(环向划分数为24)3道环索、下弦节点设有3或4根撑杆和24边形(环向划分数为24)4道环索、下弦节点设有3或4根撑杆。

    相较于传统的肋环型和葵花型索穹顶,五边形三四撑杆混合型索穹顶具有如下优点和特点:

    1) 除外圈外的内部上弦节点均有三根及上的上弦索相交所形成的五边形网格大,所需要的上弦索较少。

    2) 多撑杆的稳定性比较好,且因上弦节点有多根上弦索与至少一根撑杆相交,有较好的传力性能,索穹顶整体稳定性可以得到提高[11, 12, 15]

    3) 整个索穹顶的杆索数量比约为1∶2.22,大于工程中常用的Geiger型索穹顶(1∶3)、Levy型索穹顶(1∶5)。拉索的成本远高于撑杆的成本,因此五边形三四撑杆混合型索穹顶在经济上具有优势,具有工程应用前景。

    圆形平面五边形三四撑杆混合型开口索穹顶,当环向划分为n等份,由于结构自身的轴对称性,仅需对其2 / n结构进行分析研究。索穹顶外周边设有刚度很大的外环梁,可视作索穹顶结构支承在不动铰支座上。

    在轴对称的预应力作用下,通过节点平衡方程组的建立,可解算索穹顶索杆内力相互间的关系式。对于双轴对称的节点可建立一个竖向力的平衡方程,对于径向对称轴上节点可建立两个节点平衡方程,对于无对称轴的一般节点可建立三个节点平衡方程式。兹以本文研讨的三四撑杆索穹顶为例,当环索数为3和4时,其节点、索杆内力和节点平衡方程式的数量可见表1。由此可见,对索穹顶结构,未知索杆内力数均比节点平衡方程式数多一个,表明这是一次超静定结构,用于预应力态分析计算的结构平、剖面图如图2所示。其中,索杆内力分别用 {N_{\textit{i}{\text{a}}}} {N_1} {T_{\textit{i}{\text{a}}}} {T_{\textit{i}{\text{b}}}} {V_{\textit{i}{\text{a}}}} {V_{\textit{i}{\text{b}}}} {H_\textit{i}} {B_\textit{i}} 表示, {\alpha _{\textit{i}{\text{a}}}} {\alpha _{ \textit{i}{\text{b}}}} {\phi _{ \textit{i}{\text{a}}}} {\phi _{\textit{i}{\text{b}}}} {\phi _{\textit{i}{\text{β}}}}分别表示两类上弦脊索,两类撑杆及斜索与水平面的夹角, {\gamma _{\textit{i}{\text{a}}}} {\gamma _{\textit{i}{\text{b}}}} {\delta _{\textit{i}{\text{a}}}} {\delta _{\textit{i}{\text{b}}}} {\delta _{\textit{i}{\text{β }}}} 分别表示与相应脊索,撑杆及斜索的水平投影与所在五边形单元的主径向线间夹角。

    表  1  五边形三四撑杆混合型开口索穹顶的节点、索杆内力和节点平衡方程式数
    Table  1.  Numbers of nodes, cable-strut internal forces and node equilibrium equations of pentagonal three-four-strut alternated cable dome with inner hole
    类别 {三圈索穹顶}_{ {\text{24} }}{F_{ {\text{3} }(3,4)} } {四圈索穹顶}_{ {\text{24} }}{F_{ {\text{4} }(3,4)} }
    径向对称轴上节点 1a 1b 2b 3a 3b 1′ 2′ 3′共8个 1b 2a 2b 3b 4a 4b 1′ 2′ 3′ 4′共10个
    无对称轴节点 2a共1个 1a 3a共2个
    节点平衡方程式 (2×8)+(3×1)=19个 (2×10)+(3×2)=26个
    索杆内力 N1 T1a T1b V1a V1b B1 H1
    N2a T2a T2b V2a V2b B2 H2
    T3a T3b V3a V3b B3 H3共20个
    N1 N1a T1a T1b V1a V1b B1 H1
    T2a T2b V2a V2b B2 H2
    N3a T3a T3b V3a V3b B3 H3
    T4a T4b V4a V4b B4 H4共27个
    下载: 导出CSV 
    | 显示表格
    图  2  开口结构分析计算用平剖面图
    Figure  2.  Sectional and plan diagrams for calculation with inner hole

    以最内圈撑杆内力V1a为基准,自索穹顶内孔向外对各节点建立平衡方程,可列出索穹顶的节点平衡方程组,基于组建节点平衡方程式[1314]的方法,提出五边形三四撑杆混合型索穹顶预张力分布的计算式:

    {\boldsymbol{At}} = {V_{1{\text{a}}}}{\boldsymbol{c}} (6)

    求解后即得:

    {\boldsymbol{t}} = {V_{1{\text{a}}}}{{\boldsymbol{A}}^{ - 1}}{\boldsymbol{c}} (7)

    式中:A为无量纲的系数矩阵,各矩阵系数是索杆方位的三角函数;−1的逆矩阵;为不包括最内圈撑杆内力V1a在内的索杆内力向量;为由V1a撑杆方位三角函数表达的自由项无量纲系数向量。

    奇数圈索穹顶节点平衡方程组就可用简单的矩阵形式(6)表达,见式(8)(式中cos和sin函数分别简写为c和s)。将式(8)中红虚线框部分替换为式(9),即可得到偶数圈索穹顶节点平衡方程的矩阵表达形式。

    { {\left[ \begin{array}{*{20}{c}} { - {\text{s}}\dfrac{{\text{π}}}{n}}&{{{\mathrm{c}}} \dfrac{{\text{π}}}{n}}&0&0&0&0&0&0&0&0&0&0&0 \\ { - {\text{s}}\dfrac{{\text{π}}}{n}}&{ - {{\mathrm{c}}} \dfrac{{\text{π}}}{n}}&0&0&0&0&0&0&0&0&0&0&0 \\ \begin{gathered} {{\mathrm{c}}} {\alpha _{1{\text{a}}}} \times \\ {\rm{c}} {\gamma _{1{\text{a}}}} \\ \end{gathered} &\begin{gathered} {\rm{c}} {\alpha _{1{\text{a}}}} \times \\ {\text{s}}{\gamma _{1{\text{a}}}} \\ \end{gathered} &{{\text{s}}{\alpha _{1{\text{a}}}}}&0&0&\begin{gathered} - {\rm{c}} {\alpha _{1{\text{a}}}} \times \\ {\rm{c}} \left({\gamma _{1{\text{a}}}} - \dfrac{{\text{π}}}{n}\right) \\ \end{gathered} &{ - {\text{s}}{\alpha _{1{\text{a}}}}}&0&0&0&0&0&0 \\ 0&0&0&0&0&{{\rm{c}} {\alpha _{1{\text{b}}}}{\rm{c}} {\gamma _{1{\text{b}}}}}&{{\text{s}}{\alpha _{1{\text{b}}}}}&0&0&0&0&0&0 \\ 0&0&0&{2{\rm{c}} {\phi _{1{\text{b}}}}{\rm{c}} {\delta _{1{\text{b}}}}}&{2{\text{s}}{\phi _{1{\text{b}}}}}&\begin{gathered} - {\rm{c}} {\phi _{1{\text{b}}}} \times \\ {\rm{c}} \left({\delta _{1{\text{b}}}} - \dfrac{{2{\text{π}}}}{n}\right) \\ \end{gathered} &{{\text{s}}{\phi _{1{\text{b}}}}}&\begin{gathered} - 2{\rm{c}} {\alpha _{{\text{1b}}}} \times \\ {\rm{c}} \left({\gamma _{{\text{1b}}}} - \dfrac{{2{\text{π}}}}{n}\right) \\ \end{gathered} &{ - 2{\text{s}}{\alpha _{1{\text{b}}}}}&0&0&0&0 \\ 0&0&0&{{\rm{c}} {\beta _1}}&{{\text{s}}{\beta _1}}&0&0&0&0&0&0&0&0 \\ 0&0&0&{ - 2{\text{s}}\dfrac{{2{\text{π}}}}{n}}&0&0&0& - {\rm{c}} {\phi_{1{\text{beta}}}}&{{\text{s}}{\beta _1}}&0&0&0&0 \\ 0&0&0&0&0&0&0&{2{\rm{c}} {\alpha _{k{\text{a}}}}{\rm{c}} {\gamma _{k{\text{a}}}}}&{2{\text{s}}{\alpha _{{\text{2a}}}}}&0&0&\begin{gathered} - {\rm{c}} {\alpha _{{\text{2a}}}} \times \\ {\rm{c}} \left({\gamma _{{\text{2a}}}} - \dfrac{{2{\text{π}}}}{n}\right) \\ \end{gathered} &{ - {\text{s}}{\alpha _{{\text{2a}}}}} \\ 0&0&0&0&0&0&0&0&0&0&0&{{\rm{c}} {\alpha _{{\text{2b}}}}{\rm{c}} {\gamma _{{\text{2b}}}}}&{{\text{s}}{\alpha _{{\text{2b}}}}} \\ 0&0&0&0&0&0&0&{{\rm{c}} {\phi _{k{\text{a}}}}}&{{\text{s}}{\phi _{{\text{2a}}}}}&{ - {\rm{c}} {\phi _{{\text{2a}}}}}&{{\text{s}}{\phi _{{\text{2a}}}}}&0&0 \\ 0&0&0&0&0&0&0&0&0&\begin{gathered} 2{\rm{c}} {\phi _{{\text{2b}}}} \times \\ {\rm{c}} {\delta _{{\text{2b}}}} \\ \end{gathered} &{2{\text{s}}{\phi _{{\text{2b}}}}}&\begin{gathered} - {\rm{c}} {\phi _{{\text{2b}}}} \times \\ {\rm{c}} \left({\delta _{{\text{2b}}}} - \dfrac{{2{\text{π}}}}{n}\right) \\ \end{gathered} &{{\text{s}}{\phi _{{\text{2b}}}}} \\ 0&0&0&0&0&0&0&0&0&\begin{gathered} 2{\rm{c}} {\beta _{\text{2}}} \times \\ {\rm{c}} {\delta _{2\beta }} \\ \end{gathered} &{2{\text{s}}{\beta _{\text{2}}}}&0&0 \\ 0&0&0&0&0&0&0&0&0&{ - 2{\text{s}}\dfrac{{2{\text{π}}}}{n}}&0&0&0 \end{array} \right]^ \top }\cdot\left[ {\begin{array}{*{20}{c}} {{N_1}} \\ {{N_{1{\text{a}}}}} \\ {{T_{1{\text{a}}}}} \\ {{T_{1{\text{b}}}}} \\ {{V_{1{\text{b}}}}} \\ {{B_1}} \\ {{H_1}} \\ {{T_{{\text{2a}}}}} \\ {{T_{{\text{2b}}}}} \\ {{V_{{\text{2a}}}}} \\ {{V_{{\text{2b}}}}} \\ {{B_2}} \\ {{H_2}} \end{array}} \right] = {V_{1{\text{a}}}}\left[ {\begin{array}{*{20}{c}} { - {\rm{c}} {\phi _{1{\text{a}}}}{\rm{c}} \left({\delta _{1{\text{a}}}} + \dfrac{{\text{π}}}{n}\right)} \\ {{\rm{c}} {\phi _{1{\text{a}}}}{s} \left({\delta _{1{\text{a}}}} + \dfrac{{\text{π}}}{n}\right)} \\ { - {s} {\phi _{1a}}} \\ {2{\rm{c}} {\phi _{1{\text{a}}}}{\rm{c}} {\delta _{1{\text{a}}}}} \\ { - 2{s} {\phi _{1{\text{a}}}}} \\ 0 \\ 0 \\ 0 \\ {\text{0}} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}} \right] } (9)

    索穹顶每增加两道环索、扩充一圈五边形四撑杆和一圈五边形三撑杆网格,对所讨论索穹顶增加6个节点,同时增加13个未知索杆内力和节点平衡方程式,分别增加17阶(kli迭代时需要消除产生的与上一圈相同的4个索杆未知内力,如式(8)蓝虚线框所示)。对于奇、偶数圈索穹顶,A分别为8.5m-2.5阶、8.5m-4阶方阵,t分别为8.5m-2.5阶、8.5m-4阶的列向量。如果索穹顶几何尺寸参数已知,利用式(7)便可确定出整个索穹顶的预张力分布情况。因此,式(6)、(7)可推广应用于任意m ≥ 1五边形三四撑杆混合型索穹顶预应态相对于V1a = −1.0索杆内力的求解,而且此解是相对内力的精确解。

    假设给定跨度、孔跨L1、矢高f和结构厚度h,偶数圈五边形三四撑杆混合型开口索穹顶简化后的半榀平面桁架及其几何参数,如图3所示。其他几何参数的计算见表2

    节点间水平间隔与球面穹顶上各圈上弦节点的水平投影到结构中心点的水平距离(即上弦节点的水平投影半径,可参考图3(a))之间满足下列条件:

    图  3  下弦节点布置方案
    Figure  3.  Layouts for bottom-layer nodes
    表  2  索穹顶结构的几何参数计算公式
    Table  2.  Calculation formulas for geometric parameters of cable dome
    几何参数 计算公式 几何参数 计算公式
    R R = \dfrac{{{L^2}}}{{8f}} + \dfrac{f}{2} {S_{i{\text{a}}}^\prime} \begin{gathered} {S_{i{\text{a}}}^\prime} = \sqrt {{{\left(r_i - {r_{i{\text{a}}}}\cos \dfrac{{\text{π}}}{n}\right)}^2} + {{\left({r_{i{\text{a}}}}\sin \dfrac{{\text{π}}}{n}\right)}^2}}\times \\ \text{mod} \left(i,2\right) + \left(r_i - {r_{i{\text{a}}}}\right) \times \text{mod} \left(i + 1,2\right) \\ \end{gathered}
    Δ \varDelta = \dfrac{{L - {L_1}}}{{4\left(j - 1\right)}} {S_{i{\text{b}}}^\prime} {S_{i{\text{b}}}^\prime} = \sqrt {{{\left({r_{i{\text{b}}}}\cos \dfrac{{2{\text{π}}}}{n} - r_i\right)}^2} + {{\left({r_{i{\text{b}}}}\sin \dfrac{{2{\text{π}}}}{n}\right)}^2}}
    j j = m + 1 {S_i^\prime} \begin{gathered} {S_i^\prime} = \left({r_{\left(i + 1\right){\text{a}}}} - r_i\right) \times \text{mod} \left(i,2\right) + \\ \sqrt {{{\left({r_{\left(i + 1\right){\text{a}}}}\cos \dfrac{{\text{π}}}{n} - r_i\right)}^2} + {{\left({r_{\left(i + 1\right){\text{a}}}}\sin \dfrac{{\text{π}}}{n}\right)}^2}} \times \\\text{mod} \left(i + 1,2\right) \\ \end{gathered}
    {r_{i{\text{a}}}} {r_{i{\text{a}}}} = R\sin {\theta _{i{\text{a}}}} {\alpha _{i{\text{a}}}} {\alpha _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{h_{i{\text{a}}}}}}{{{S_{i{\text{a}}}}}}
    {r_{i{\text{b}}}} {r_{i{\text{b}}}} = R\sin {\theta _{i{\text{b}}}} {\alpha _{i{\text{b}}}} {\alpha _{i{\text{b}}}} = {\tan ^{ - 1}}\dfrac{{h_{i{\text{b}}}}}{{{S_{i{\text{b}}}}}}
    r_i^\prime r_i^\prime = R\sin {\theta _i} {\varphi _{i{\text{a}}}} {\varphi _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{h_{i{\text{a}}}^\prime} }}{{{S_{i{\text{a}}}^\prime} }}
    {h_{i{\text{a}}}} {h_{i{\text{a}}}} = R\left(\cos {\theta _{i{\text{a}}}} - \cos {\theta _{i{\text{b}}}}\right) {\varphi _{i{\text{b}}}} {\varphi _{i{\text{b}}}} = {\tan ^{ - 1}}\dfrac{{h_{i{\text{b}}}^\prime }}{{{S_{i{\text{b}}}^\prime} }}
    h_{i{\text{b}}} h_{i{\text{b}}} = R(\cos {\theta _{i{\text{b}}}} - \cos {\theta _{\left(i + 1\right){\text{a}}}}) {\beta _i} {\beta _i} = \dfrac{{h_i^\prime }}{{{S_i^\prime} }}
    {h_{i{\text{a}}}^\prime} {h_{i{\text{a}}}^\prime} = h_i + R\left(\cos {\theta _{ia}} - \cos {\theta _i}\right) {\gamma _{i{\text{a}}}} {\gamma _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{r_{i{\text{b}}}}\sin \dfrac{{\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n}}}{{{r_{i{\text{b}}}}\cos \dfrac{{\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n} - {r_{i{\text{a}}}}}}
    h_{i{\text{b}}}^\prime h_{i{\text{b}}}^\prime = h_i + R\left(\cos {\theta _{i{\text{b}}}} - \cos {\theta _i}\right) {\gamma _{i{\text{b}}}} {\gamma _{i{\text{b}}}} = {\tan ^{ - 1}}\dfrac{{{r_{\left(i + 1\right){\text{a}}}}\sin \dfrac{{\left(1 + \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n}}}{{{r_{\left(i + 1\right){\text{a}}}}\cos \dfrac{{\left(1 + \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n} - {r_{i{\text{b}}}}}}
    h_i^\prime h_i^\prime = h_i - R\left(\cos {\theta _i} - \cos {\theta _{\left(i + 1\right){\text{a}}}}\right) {\delta _{i{\text{a}}}} {\delta _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{r_{i{\text{a}}}}\sin \dfrac{{\text{π}}}{n}}}{{r_i - {r_{i{\text{a}}}}\cos \dfrac{{\text{π}}}{n}}} \times {\text{mod}}\left(i,2\right)
    {S_{i{\text{a}}}} {S_{i{\text{a} } } } = \sqrt {\begin{gathered} {\left({r_{i{\text{b} } } }\cos \dfrac{ {\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π } } } }{n} - {r_{i{\text{a} } } }\right)^2} + \\{\left({r_{i{\text{b} } } }\sin \dfrac{ {\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π } } } }{n}\right)^2} \\ \end{gathered} } {\delta _{i{\text{b}}}} {\delta _{i{\text{b} } } } = {\tan ^{ - 1} }\dfrac{ { {r_{i{\text{b} } } }\sin \dfrac{ { 2\pi } }{n} } }{ { {r_{i{\text{b} } } }\cos \dfrac{ { 2\pi } }{n} - r_i } }
    {S_{i{\text{b}}}} {S_{i{\text{b}}}} = \sqrt {\begin{gathered} {\left({r_{\left(i + 1\right){\text{a}}}}\cos \frac{{\left({\text{1}} + \text{mod} \left(i,2\right)\right) \times {\text{π }}}}{n} - {r_{i{\text{b}}}}\right)^2} + \\ {\left({r_{\left(i + 1\right){\text{a}}}}\sin \frac{{\left({\text{1}} + \text{mod} \left(i,2\right)\right) \times {\text{π }}}}{n}\right)^2} \\ \end{gathered} } {\delta _{i{\text{β }}}} {\delta _{i{\text{β}}}} = {\tan ^{ - 1}}\dfrac{{{r_{\left(i + 1\right){\text{a}}}}\sin \dfrac{{\text{π}}}{n}}}{{{r_{\left(i + 1\right){\text{a}}}}\cos \dfrac{{\text{π }}}{n} - {r_i}}} \times {\text{mod}}\left(i + {\text{1}},2\right)
    注: {r_{i{\text{a}}}} {r_{i{\text{b}}}} {r_i^\prime} 分别为上、下弦节点对中轴线的半径; {\theta _{i{\text{a}}}}{\theta _{i{\text{b}}}}{\theta _i}为相应点的球半径与中轴线的球面夹角; {h_{i{\text{a}}}}{h_{i{\text{b}}}}{h_{i{\text{a}}}^\prime} {h_{i{\text{b}}}^\prime} {h_i^\prime} 分别为脊索、撑杆、斜索的高度;{S_{i{\text{a}}}}{S_{i{\text{b}}}}{S_i^\prime} {S_{i{\text{a}}}^\prime} {S_{i{\text{b}}}^\prime} 为脊索、撑杆、斜索的水平投影长度,mod函数用于求除后的余数。
    下载: 导出CSV 
    | 显示表格
    {\varDelta _{{\text{1a}}}} = {r_{{\text{1b}}}} - {r_{{\text{1a}}}}\quad {{\varDelta }_{\text{1b}}}={{r}_{\text{2a}}}-{{r}_{\text{1b}}}
    {\varDelta _{{\text{2a}}}} = {r_{{\text{2b}}}} - {r_{{\text{2a}}}}\quad {\varDelta _{{\text{2b}}}} = {r_{{\text{3a}}}} - {r_{{\text{2b}}}}
    {\varDelta _{k{\text{a}}}} = {r_{k{\text{b}}}} - {r_{k{\text{a}}}} \quad{\varDelta _{k{\text{b}}}} = {r_{{\text{(}}k + {\text{1)a}}}} - {r_{k{\text{b}}}}
    {\varDelta _{l{\text{a}}}} = {r_{l{\text{b}}}} - {r_{l{\text{a}}}}\quad {\varDelta _{{l\text{b}}}} = {r_{{(l+1)\text{a}}}} - {r_{{l\text{b}}}} \quad(i = 1 \cdots m)
    {\varDelta _{i{\text{a}}}} + {\varDelta _{i{\text{b}}}} = 2\varDelta (10)

    下弦索杆节点位置布置指标采用下弦节点水平半径系数δ来表示,即:

    \delta =\text{2}\left(\frac{{r}_{i}-{r}_{i\text{a}}}{{r}_{i\text{b}}-{r}_{i\text{a}}}\right)+1 \quad (i = 1 \cdots m) (11)

    根据节点i′位置的不同,本文分3种下弦布置方案(δ = 1、2、3,见图3)考虑。

    上弦网格调整系数η由网格内节点间水平间隔控制,满足:

    \eta = \frac{{{\varDelta _{i{\text{a}}}}}}{{{\varDelta _{i{\text{b}}}}}} \quad(i = 1 \cdots m) (12)

    本文改变网格节点间水平间隔的占比,选择了三种上弦网格调整方案(η = 1/3、1/2、1)进行对比研究。

    结构预张力分布的均匀性指标可采用预应力态下索杆相对内力的大小来表示,即 \chi = {F_{\max }}/{V_{1{\text{a}}}} \chi 愈大,预应力态索杆内力分布愈不均匀,不利于构件选用和施工张拉。

    结构厚度h1h2hkhl分别表示过下弦节点1′、2′、k′、l′作垂线与球面上相交于点1、2、kl与对应下弦节点之间的距离(图4),可表示为:

    {h_{\text{1}}} = h\left(1 + \frac{{{r_{\text{1}}}}}{r}\xi \right)
    {h_{\text{2}}} = h\left(1 + \frac{{{r_{\text{2}}}}}{r}\xi \right)
    {h_k} = h\left(1 + \frac{{{r_k}}}{r}\xi \right)
    {h_l} = h\left(1 + \frac{{{r_l}}}{r}\xi \right) \qquad (i = 1 \cdots m) (13)

    式中:r = L / 2;h为结构跨中厚度;ξ为结构厚度调整系数,如ξ为0,表明索穹顶各圈结构厚度是相等的,反之结构厚度按线性变化。

    图  4  各圈环索节点位置结构厚度示意图
    Figure  4.  Schematic diagram of structural thickness at each hoop cable joint

    本文取最内圈撑杆内力V1a = −1.0作为基准值,改变选取的五边形三四撑杆混合型索穹顶的设计参数取值,比较索杆内力分布的变化,以研究结构预张力对不同的结构参数的敏感性。分析时假定跨度L = 120 m,孔跨L1 = 3/7L,环向划分数n = 24。首先设定结构厚跨比h / L = 0.08,结构厚度调整系数ξ = 0,上弦网格调整系数η = 1,分别改变矢跨比f / L、环索道数m及下弦节点布置半径系数δ,索穹顶预张力分布情况如表3图5所示;然后设定矢跨比f / L = 0.08,环索道数m = 2,下弦节点布置半径系数δ = 2,分别改变结构厚跨比h / L、结构厚度调整系数ξ,上弦网格调整系数η,索穹顶预张力分布情况如表4图6所示。由表34图56可分析得到索穹顶不同参数下预张力分布的变化规律以及预应力态的参数敏感度,具体如下:

    表  3  五边形三四撑杆混合型开口索穹顶预应力态索杆内力计算结果(h / L = 0.08、ξ = 0、η = 1)
    Table  3.  Analytical results of pretension distribution of pentagonal three-four-strut alternated cable domes with inner hole (given h / L = 0.08, ξ = 0 and η = 1)
    矢跨比f / L0.060.08
    环索道数m2424
    计算圈数i121234121234
    下弦布置方案1Tia8.7530.3411.2357.06104.55996.416.6325.188.5044.1483.97820.12
    Tib14.1726.4826.1550.42324.06889.7810.5021.5319.5338.65251.96718.33
    Via−1.00−6.54−1.00−6.80−12.79−126.04−1.00−7.22−1.00−6.99−13.65−139.01
    Vib−0.78−2.57−0.78−2.63−15.99−76.61−0.76−2.77−0.77−2.66−16.39−82.41
    Bi7.2414.344.307.9959.50181.147.8319.044.348.4064.29208.72
    Hi11.4043.635.1517.4098.23372.9712.7060.005.3418.80109.24445.61
    Nia31.6434.94126.5523.9226.4399.97
    Ni27.1326.7320.4420.16
    下弦布置方案2Tia8.0929.7310.9857.81109.741133.936.1524.998.3245.2389.99974.74
    Tib13.4926.7925.9451.78351.671036.7610.1222.3119.4940.32281.99881.14
    Via−1.00−6.94−1.00−7.05−13.60−146.65−1.00−7.73−1.00−7.32−14.78−168.82
    Vib−0.68−2.45−0.76−2.66−17.29−88.39−0.67−2.71−0.76−2.74−18.34−100.06
    Bi5.2110.733.737.2955.51186.625.5213.483.767.6860.67220.97
    Hi9.5135.354.8416.6090.57388.9510.2044.734.9417.74100.90468.04
    Nia27.8833.40132.1520.8325.12106.53
    Ni23.6825.3617.5718.96
    下弦布置方案3Tia6.9426.9010.4056.69111.471251.415.3323.037.9044.9293.461127.50
    Tib11.9025.0424.9251.47369.681171.429.1021.4818.8640.77306.371051.81
    Via−1.00−7.30−1.00−7.33−14.38−170.91−1.00−8.17−1.00−7.69−15.90−205.50
    Vib−0.60−2.30−0.74−2.68−18.45−100.38−0.61−2.63−0.74−2.81−20.30−120.01
    Bi3.417.523.216.5951.49191.203.569.143.236.9957.40234.88
    Hi7.3426.714.4015.3483.00394.727.6431.864.4416.2692.86482.14
    Nia22.8230.93133.5616.9923.16110.03
    Ni19.1923.3114.1517.31
    矢跨比f / L0.100.12
    环索道数m2424
    计算圈数i121234121234
    下弦布置方案1Tia5.3722.646.8836.5572.45729.434.5421.615.8231.6365.59685.43
    Tib8.3319.0115.6031.74210.43627.086.9017.8213.0127.26184.35578.64
    Via−1.00−8.10−1.00−7.19−14.66−155.54−1.00−9.24−1.00−7.41−15.84−176.72
    Vib−0.74−3.05−0.76−2.70−16.94−90.08−0.73−3.43−0.74−2.75−17.66−100.18
    Bi8.6127.684.398.8870.42247.129.6347.194.459.4378.29302.19
    Hi14.3390.075.5320.41122.96546.9316.44158.075.7422.27140.25693.09
    Nia19.3321.3784.7016.2918.0375.19
    Ni16.4616.2513.8313.66
    下弦布置方案2Tia5.0022.616.7437.8479.09901.124.2521.545.7033.0572.75875.41
    Tib8.1220.0415.6533.60242.25806.106.8118.9613.1329.26217.68775.56
    Via−1.00−8.69−1.00−7.61−16.11−196.21−1.00−9.87−1.00−7.91−17.64−230.33
    Vib−0.67−3.04−0.75−2.83−19.57−114.57−0.66−3.45−0.74−2.93−20.99−132.77
    Bi5.8917.683.788.1266.81266.046.3524.643.818.6174.14326.39
    Hi11.0158.975.0619.02113.25572.6011.9882.385.1720.45128.10713.77
    Nia16.6420.1991.9613.8716.9483.02
    Ni13.9415.1511.5412.64
    下弦布置方案3Tia4.3721.096.4138.0283.811088.773.7420.205.4433.5778.491100.99
    Tib7.4419.7515.2534.53271.381013.316.3519.0312.8830.52250.881023.42
    Via−1.00−9.19−1.00−8.06−17.61−248.67−1.00−10.38−1.00−8.46−19.55−302.93
    Vib−0.62−3.03−0.75−2.95−22.41−144.68−0.63−3.51−0.75−3.11−24.81−175.96
    Bi3.7311.293.257.4364.20291.333.9114.243.277.9072.02365.27
    Hi7.9738.644.4917.26104.31594.778.3547.844.5418.35117.63741.78
    Nia13.5218.5496.9211.2315.4989.13
    Ni11.1513.749.1711.39
    下载: 导出CSV 
    | 显示表格
    图  5  预张力指标χ随矢跨比和环索道数变化
    Figure  5.  Tendency chart of pretension index χ varying with f / L and m
    表  4  结构高度变化时五边形三四撑杆混合型开口索穹顶预应力态索杆内力计算结果(f / L = 0.08、m = 2、δ = 2)
    Table  4.  Analytical results of pretension distribution of pentagonal three-four-strut alternated cable domes with inner hole (given f / L = 0.08, m = 2 and δ=2)
    厚跨比h / L0.060.08
    厚度调整系数ξ−0.100.1−0.100.1
    计算圈数i121212121212
    上弦网格调整方案1Tia7.8264.407.9062.667.9861.188.2657.048.3256.008.3755.10
    Tib8.5033.838.6133.078.7132.429.0630.439.1429.999.2129.60
    Via−1.00−11.06−1.00−10.71−1.00−10.40−1.00−9.63−1.00−9.42−1.00−9.25
    Vib−0.69−6.84−0.68−6.31−0.68−5.87−0.64−5.02−0.64−4.71−0.63−4.45
    Bi10.0458.059.4546.558.9338.797.1727.876.8324.056.5321.20
    Hi19.54200.3218.30160.3717.22133.2013.4294.6512.6580.8911.9770.50
    Nia23.4123.7023.9624.9225.1225.30
    Ni17.5117.7517.9718.7918.9619.12
    上弦网格调整方案2Tia6.7843.036.8741.936.9441.017.2238.657.2837.987.3437.40
    Tib8.4827.468.6126.908.7226.439.1325.099.2224.759.3024.46
    Via−1.00−9.72−1.00−9.39−1.00−9.12−1.00−8.49−1.00−8.30−1.00−8.14
    Vib−0.69−5.04−0.68−4.65−0.67−4.32−0.64−3.74−0.63−3.50−0.62−3.31
    Bi9.0641.768.5533.908.1128.516.6321.106.3318.306.0716.21
    Hi17.75143.6116.67116.4015.7197.5812.4471.3911.7461.3011.1253.63
    Nia21.6822.0022.2823.3423.5723.77
    Ni17.1617.4417.6918.6318.8419.02
    上弦网格调整方案3Tia5.6127.395.7026.805.7926.316.0825.366.1524.996.2224.67
    Tib9.0523.829.2323.469.4023.169.9822.5310.1222.3110.2522.12
    Via−1.00−9.00−1.00−8.67−1.00−8.40−1.00−7.93−1.00−7.73−1.00−7.56
    Vib−0.73−3.81−0.72−3.51−0.71−3.27−0.68−2.90−0.67−2.71−0.66−2.56
    Bi7.4527.537.0822.876.7619.605.7515.365.5213.485.3212.07
    Hi14.7194.0413.8978.0313.1666.6110.7651.5710.2044.739.6939.48
    Nia18.6018.9819.3320.5420.8321.10
    Ni15.5215.8616.1817.3017.5717.82
    厚跨比h / L0.100.12
    厚度调整系数ξ−0.100.1−0.100.1
    计算圈数i121212121212
    上弦网格调整方案1Tia8.5053.378.5552.628.5851.968.6551.118.6850.528.7049.99
    Tib9.3828.759.4328.429.4828.149.5727.719.6127.459.6427.22
    Via−1.00−8.93−1.00−8.79−1.00−8.66−1.00−8.51−1.00−8.40−1.00−8.30
    Vib−0.61−4.15−0.61−3.94−0.60−3.77−0.60−3.66−0.59−3.51−0.59−3.38
    Bi5.8018.545.5716.535.3614.985.0114.224.8512.954.7011.96
    Hi10.2460.799.6953.239.1947.288.2844.447.8439.407.4535.36
    Nia25.7525.9026.0226.2526.3626.46
    Ni19.5119.6419.7619.9620.0620.15
    上弦网格调整方案2Tia7.4736.427.5135.937.5535.507.6235.037.6534.647.6834.29
    Tib9.5023.899.5723.659.6323.439.7323.149.7922.959.8322.77
    Via−1.00−7.89−1.00−7.76−1.00−7.64−1.00−7.53−1.00−7.42−1.00−7.33
    Vib−0.61−3.11−0.60−2.95−0.60−2.81−0.59−2.74−0.59−2.62−0.58−2.53
    Bi5.4414.375.2412.865.0611.704.7611.184.6110.224.489.47
    Hi9.6046.869.0941.128.6236.617.8234.677.4130.787.0427.66
    Nia24.2824.4524.6124.8725.0025.12
    Ni19.4919.6419.7920.0320.1520.26
    上弦网格调整方案3Tia6.3624.316.4124.026.4623.786.5423.636.5823.396.6123.18
    Tib10.5421.8710.6521.7110.7521.5610.9121.4510.9921.3011.0721.18
    Via−1.00−7.40−1.00−7.26−1.00−7.14−1.00−7.08−1.00−6.96−1.00−6.87
    Vib−0.65−2.43−0.64−2.30−0.64−2.19−0.63−2.15−0.63−2.06−0.62−1.98
    Bi4.8910.994.739.924.599.104.398.834.278.134.177.59
    Hi8.5235.418.0831.267.6827.977.0526.906.6823.976.3521.61
    Nia21.7121.9422.1522.4722.6622.82
    Ni18.4018.6118.8119.1119.2919.45
    下载: 导出CSV 
    | 显示表格
    图  6  预张力指标χ随高跨比和厚度调整系数变化
    Figure  6.  Tendency chart of pretension index χ varying with h / L and ξ

    (1) 矢跨比。矢跨比的增加会拉大内、外圈预张力的比例。当结构矢跨比在大于0.10后,索穹顶结构预应力态索杆内力的变化幅度不足20%,表明索杆内力变化对矢跨比的敏感度较弱。从预张力分布的均匀性角度来看,结构的矢跨比和厚跨比需要维持在一定的比例范围,否则可能出现内外圈预张力比例不合理的情况,尤其发生在使用较小的节点半径系数及较少的环索道数时。

    (2) 环索道数。在矢跨比和厚跨比两者比例合宜的前提下,随着环索数量的增加,结构预张力分布的不均匀性也在抬升,自索穹顶内孔向外索杆预张力值会随着圈数的增加表现出成倍增长的趋势,因此,在工程设计时,应在结构网格尺寸符合要求的情况下尽可能减少索穹顶的圈数。

    (3) 下弦节点半径系数。随着下弦节点半径的增大,环索、斜索、上弦内环索预张力均呈现出减小的趋势,但撑杆的预张力有所增加;如表3所示,采用较大的节点水平半径或环索道数较多时,最外圈脊索的预张力水平会出现超过最外圈环索的情况,增大了索穹顶支座处的水平反力,产生支座设计上的困难。然而,采用较小的结构的下弦节点水平半径,结构内外圈预张力分布差异会拉大。目前索穹顶施工成形方法一般选择最外圈斜索或环索作为主动构件以实现整体结构的预应力刚化,而其它索杆通常以原长进行安装。因此,在索穹顶张拉成形时,较大的内外圈索杆预张力比例容易导致内圈索杆预张力不足[26],将导致上弦内环索和内圈脊索在竖向荷载作用下率先退出工作,进而影响结构的承载力和稳定性。

    比较三种不同的下弦节点布置方案,在斜索高度增幅相近,水平投影均缩短相同长度的情况下,索杆内力差值随矢跨比增大而拉大,表中最大减幅达到50%,索杆预张力的分布对下弦节点的位置较为敏感。因此,下弦节点位置的布置在结构设计及后续优化是需要重点考虑的问题。

    (4) 结构厚度参数。结构厚度可以极大地增加结构竖向刚度,因此厚跨比hi / L在参数设计时需要着重考虑。由图6可见,随着结构厚跨比的增加,索穹顶预张力分布的不均匀性在降低。此外,结构厚度调整系数为正值时,也能改善其预应力态的索杆内力分布情况。当结构厚跨比不足时(如h / L ≤ 0.08),索杆内力变化较大,相对差异高达40%;而当结构厚跨比继续增加时,结构厚度调整系数对预张力的影响逐渐减弱。

    (5) 上弦网格调整系数。减小节点间水平间隔ΔaΔb的比值,上弦a类脊索与b类脊索的内力会相差越大,上弦脊索分段间的预张力分布的不均匀性在增加。如表4所示,采用上弦网格布置方案1的结构布置时预张力分布尤为不均匀,易出现最外圈脊索的预张力超过最外圈环索的情况。此外,随着网格尺寸变大,下弦节点会相应的向外移动,会加剧这种情况的发生。使用同一径向网格尺寸,a类脊索水平投影缩减50%,a类脊索内力提升约1.4倍,可以看出该参数是影响脊索分段预张力的重要参数。

    本文提出一种五边形三四撑杆混合型索穹顶,该结构与传统Fuller张拉结构体系不同,上弦脊索采用自由等腰五边形网格正、倒置交替布设,其次,上下弦节点间设置了多根倾斜的撑杆。通过对其构形与预应力态的分析,可以得出以下结论:

    (1) 该索穹顶径向各榀上弦网格之间通过上弦内环索相连,外周边设有刚性环梁,下弦节点之间通过下弦环索相连,形成闭合的结构构形。其上弦节点因交有多根不共面上弦索且至少与一根撑杆相交,下弦节点均采用多撑杆的布置形式,相较于传统索穹顶,该索穹顶的撑杆以及整体结构的稳定性均得到提高。

    (2) 五边形三四撑杆混合型索穹顶在轴对称荷载下可归属为一次超静定结构。基于节点平衡方程,提出了该索穹顶预应力态的简捷计算方法,分别推导了奇数圈和偶数圈开口索穹顶预应力态的索杆内力一般性计算公式,可求得预应力态的精确解。

    (3) 根据文中所提出的计算理论与方法,给出设置不同参数的60个计算用索穹顶模型的预张力相对值,说明了环索道数、下弦节点半径系数、厚跨比、上弦网格调整系数是影响索杆内力分布的主要因素。当环索道数由2提升到4时,内外圈环索预张力比例提升约24倍,而矢跨比影响幅度相对较小。上弦网格系数由1/3增加到1,a类脊索内力提升约1.4倍,对于脊索分段预张力影响较大。

    (4) 本文对五边形三四撑杆混合型索穹顶的分析与研究,为索穹顶的构型选择和工程设计提供了一种新思路和新选择。

  • 图  1   五边形三四撑杆混合型开口索穹顶平面图及剖面示意图

    Figure  1.   Plan and cross-section of pentagonal three-four-strut alternated cable dome with inner hole

    图  2   开口结构分析计算用平剖面图

    Figure  2.   Sectional and plan diagrams for calculation with inner hole

    图  3   下弦节点布置方案

    Figure  3.   Layouts for bottom-layer nodes

    图  4   各圈环索节点位置结构厚度示意图

    Figure  4.   Schematic diagram of structural thickness at each hoop cable joint

    图  5   预张力指标χ随矢跨比和环索道数变化

    Figure  5.   Tendency chart of pretension index χ varying with f / L and m

    图  6   预张力指标χ随高跨比和厚度调整系数变化

    Figure  6.   Tendency chart of pretension index χ varying with h / L and ξ

    表  1   五边形三四撑杆混合型开口索穹顶的节点、索杆内力和节点平衡方程式数

    Table  1   Numbers of nodes, cable-strut internal forces and node equilibrium equations of pentagonal three-four-strut alternated cable dome with inner hole

    类别 {三圈索穹顶}_{ {\text{24} }}{F_{ {\text{3} }(3,4)} } {四圈索穹顶}_{ {\text{24} }}{F_{ {\text{4} }(3,4)} }
    径向对称轴上节点 1a 1b 2b 3a 3b 1′ 2′ 3′共8个 1b 2a 2b 3b 4a 4b 1′ 2′ 3′ 4′共10个
    无对称轴节点 2a共1个 1a 3a共2个
    节点平衡方程式 (2×8)+(3×1)=19个 (2×10)+(3×2)=26个
    索杆内力 N1 T1a T1b V1a V1b B1 H1
    N2a T2a T2b V2a V2b B2 H2
    T3a T3b V3a V3b B3 H3共20个
    N1 N1a T1a T1b V1a V1b B1 H1
    T2a T2b V2a V2b B2 H2
    N3a T3a T3b V3a V3b B3 H3
    T4a T4b V4a V4b B4 H4共27个
    下载: 导出CSV

    表  2   索穹顶结构的几何参数计算公式

    Table  2   Calculation formulas for geometric parameters of cable dome

    几何参数 计算公式 几何参数 计算公式
    R R = \dfrac{{{L^2}}}{{8f}} + \dfrac{f}{2} {S_{i{\text{a}}}^\prime} \begin{gathered} {S_{i{\text{a}}}^\prime} = \sqrt {{{\left(r_i - {r_{i{\text{a}}}}\cos \dfrac{{\text{π}}}{n}\right)}^2} + {{\left({r_{i{\text{a}}}}\sin \dfrac{{\text{π}}}{n}\right)}^2}}\times \\ \text{mod} \left(i,2\right) + \left(r_i - {r_{i{\text{a}}}}\right) \times \text{mod} \left(i + 1,2\right) \\ \end{gathered}
    Δ \varDelta = \dfrac{{L - {L_1}}}{{4\left(j - 1\right)}} {S_{i{\text{b}}}^\prime} {S_{i{\text{b}}}^\prime} = \sqrt {{{\left({r_{i{\text{b}}}}\cos \dfrac{{2{\text{π}}}}{n} - r_i\right)}^2} + {{\left({r_{i{\text{b}}}}\sin \dfrac{{2{\text{π}}}}{n}\right)}^2}}
    j j = m + 1 {S_i^\prime} \begin{gathered} {S_i^\prime} = \left({r_{\left(i + 1\right){\text{a}}}} - r_i\right) \times \text{mod} \left(i,2\right) + \\ \sqrt {{{\left({r_{\left(i + 1\right){\text{a}}}}\cos \dfrac{{\text{π}}}{n} - r_i\right)}^2} + {{\left({r_{\left(i + 1\right){\text{a}}}}\sin \dfrac{{\text{π}}}{n}\right)}^2}} \times \\\text{mod} \left(i + 1,2\right) \\ \end{gathered}
    {r_{i{\text{a}}}} {r_{i{\text{a}}}} = R\sin {\theta _{i{\text{a}}}} {\alpha _{i{\text{a}}}} {\alpha _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{h_{i{\text{a}}}}}}{{{S_{i{\text{a}}}}}}
    {r_{i{\text{b}}}} {r_{i{\text{b}}}} = R\sin {\theta _{i{\text{b}}}} {\alpha _{i{\text{b}}}} {\alpha _{i{\text{b}}}} = {\tan ^{ - 1}}\dfrac{{h_{i{\text{b}}}}}{{{S_{i{\text{b}}}}}}
    r_i^\prime r_i^\prime = R\sin {\theta _i} {\varphi _{i{\text{a}}}} {\varphi _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{h_{i{\text{a}}}^\prime} }}{{{S_{i{\text{a}}}^\prime} }}
    {h_{i{\text{a}}}} {h_{i{\text{a}}}} = R\left(\cos {\theta _{i{\text{a}}}} - \cos {\theta _{i{\text{b}}}}\right) {\varphi _{i{\text{b}}}} {\varphi _{i{\text{b}}}} = {\tan ^{ - 1}}\dfrac{{h_{i{\text{b}}}^\prime }}{{{S_{i{\text{b}}}^\prime} }}
    h_{i{\text{b}}} h_{i{\text{b}}} = R(\cos {\theta _{i{\text{b}}}} - \cos {\theta _{\left(i + 1\right){\text{a}}}}) {\beta _i} {\beta _i} = \dfrac{{h_i^\prime }}{{{S_i^\prime} }}
    {h_{i{\text{a}}}^\prime} {h_{i{\text{a}}}^\prime} = h_i + R\left(\cos {\theta _{ia}} - \cos {\theta _i}\right) {\gamma _{i{\text{a}}}} {\gamma _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{r_{i{\text{b}}}}\sin \dfrac{{\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n}}}{{{r_{i{\text{b}}}}\cos \dfrac{{\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n} - {r_{i{\text{a}}}}}}
    h_{i{\text{b}}}^\prime h_{i{\text{b}}}^\prime = h_i + R\left(\cos {\theta _{i{\text{b}}}} - \cos {\theta _i}\right) {\gamma _{i{\text{b}}}} {\gamma _{i{\text{b}}}} = {\tan ^{ - 1}}\dfrac{{{r_{\left(i + 1\right){\text{a}}}}\sin \dfrac{{\left(1 + \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n}}}{{{r_{\left(i + 1\right){\text{a}}}}\cos \dfrac{{\left(1 + \text{mod} \left(i,2\right)\right) \times {\text{π}}}}{n} - {r_{i{\text{b}}}}}}
    h_i^\prime h_i^\prime = h_i - R\left(\cos {\theta _i} - \cos {\theta _{\left(i + 1\right){\text{a}}}}\right) {\delta _{i{\text{a}}}} {\delta _{i{\text{a}}}} = {\tan ^{ - 1}}\dfrac{{{r_{i{\text{a}}}}\sin \dfrac{{\text{π}}}{n}}}{{r_i - {r_{i{\text{a}}}}\cos \dfrac{{\text{π}}}{n}}} \times {\text{mod}}\left(i,2\right)
    {S_{i{\text{a}}}} {S_{i{\text{a} } } } = \sqrt {\begin{gathered} {\left({r_{i{\text{b} } } }\cos \dfrac{ {\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π } } } }{n} - {r_{i{\text{a} } } }\right)^2} + \\{\left({r_{i{\text{b} } } }\sin \dfrac{ {\left(2 - \text{mod} \left(i,2\right)\right) \times {\text{π } } } }{n}\right)^2} \\ \end{gathered} } {\delta _{i{\text{b}}}} {\delta _{i{\text{b} } } } = {\tan ^{ - 1} }\dfrac{ { {r_{i{\text{b} } } }\sin \dfrac{ { 2\pi } }{n} } }{ { {r_{i{\text{b} } } }\cos \dfrac{ { 2\pi } }{n} - r_i } }
    {S_{i{\text{b}}}} {S_{i{\text{b}}}} = \sqrt {\begin{gathered} {\left({r_{\left(i + 1\right){\text{a}}}}\cos \frac{{\left({\text{1}} + \text{mod} \left(i,2\right)\right) \times {\text{π }}}}{n} - {r_{i{\text{b}}}}\right)^2} + \\ {\left({r_{\left(i + 1\right){\text{a}}}}\sin \frac{{\left({\text{1}} + \text{mod} \left(i,2\right)\right) \times {\text{π }}}}{n}\right)^2} \\ \end{gathered} } {\delta _{i{\text{β }}}} {\delta _{i{\text{β}}}} = {\tan ^{ - 1}}\dfrac{{{r_{\left(i + 1\right){\text{a}}}}\sin \dfrac{{\text{π}}}{n}}}{{{r_{\left(i + 1\right){\text{a}}}}\cos \dfrac{{\text{π }}}{n} - {r_i}}} \times {\text{mod}}\left(i + {\text{1}},2\right)
    注: {r_{i{\text{a}}}} {r_{i{\text{b}}}} {r_i^\prime} 分别为上、下弦节点对中轴线的半径; {\theta _{i{\text{a}}}}{\theta _{i{\text{b}}}}{\theta _i}为相应点的球半径与中轴线的球面夹角; {h_{i{\text{a}}}}{h_{i{\text{b}}}}{h_{i{\text{a}}}^\prime} {h_{i{\text{b}}}^\prime} {h_i^\prime} 分别为脊索、撑杆、斜索的高度;{S_{i{\text{a}}}}{S_{i{\text{b}}}}{S_i^\prime} {S_{i{\text{a}}}^\prime} {S_{i{\text{b}}}^\prime} 为脊索、撑杆、斜索的水平投影长度,mod函数用于求除后的余数。
    下载: 导出CSV

    表  3   五边形三四撑杆混合型开口索穹顶预应力态索杆内力计算结果(h / L = 0.08、ξ = 0、η = 1)

    Table  3   Analytical results of pretension distribution of pentagonal three-four-strut alternated cable domes with inner hole (given h / L = 0.08, ξ = 0 and η = 1)

    矢跨比f / L0.060.08
    环索道数m2424
    计算圈数i121234121234
    下弦布置方案1Tia8.7530.3411.2357.06104.55996.416.6325.188.5044.1483.97820.12
    Tib14.1726.4826.1550.42324.06889.7810.5021.5319.5338.65251.96718.33
    Via−1.00−6.54−1.00−6.80−12.79−126.04−1.00−7.22−1.00−6.99−13.65−139.01
    Vib−0.78−2.57−0.78−2.63−15.99−76.61−0.76−2.77−0.77−2.66−16.39−82.41
    Bi7.2414.344.307.9959.50181.147.8319.044.348.4064.29208.72
    Hi11.4043.635.1517.4098.23372.9712.7060.005.3418.80109.24445.61
    Nia31.6434.94126.5523.9226.4399.97
    Ni27.1326.7320.4420.16
    下弦布置方案2Tia8.0929.7310.9857.81109.741133.936.1524.998.3245.2389.99974.74
    Tib13.4926.7925.9451.78351.671036.7610.1222.3119.4940.32281.99881.14
    Via−1.00−6.94−1.00−7.05−13.60−146.65−1.00−7.73−1.00−7.32−14.78−168.82
    Vib−0.68−2.45−0.76−2.66−17.29−88.39−0.67−2.71−0.76−2.74−18.34−100.06
    Bi5.2110.733.737.2955.51186.625.5213.483.767.6860.67220.97
    Hi9.5135.354.8416.6090.57388.9510.2044.734.9417.74100.90468.04
    Nia27.8833.40132.1520.8325.12106.53
    Ni23.6825.3617.5718.96
    下弦布置方案3Tia6.9426.9010.4056.69111.471251.415.3323.037.9044.9293.461127.50
    Tib11.9025.0424.9251.47369.681171.429.1021.4818.8640.77306.371051.81
    Via−1.00−7.30−1.00−7.33−14.38−170.91−1.00−8.17−1.00−7.69−15.90−205.50
    Vib−0.60−2.30−0.74−2.68−18.45−100.38−0.61−2.63−0.74−2.81−20.30−120.01
    Bi3.417.523.216.5951.49191.203.569.143.236.9957.40234.88
    Hi7.3426.714.4015.3483.00394.727.6431.864.4416.2692.86482.14
    Nia22.8230.93133.5616.9923.16110.03
    Ni19.1923.3114.1517.31
    矢跨比f / L0.100.12
    环索道数m2424
    计算圈数i121234121234
    下弦布置方案1Tia5.3722.646.8836.5572.45729.434.5421.615.8231.6365.59685.43
    Tib8.3319.0115.6031.74210.43627.086.9017.8213.0127.26184.35578.64
    Via−1.00−8.10−1.00−7.19−14.66−155.54−1.00−9.24−1.00−7.41−15.84−176.72
    Vib−0.74−3.05−0.76−2.70−16.94−90.08−0.73−3.43−0.74−2.75−17.66−100.18
    Bi8.6127.684.398.8870.42247.129.6347.194.459.4378.29302.19
    Hi14.3390.075.5320.41122.96546.9316.44158.075.7422.27140.25693.09
    Nia19.3321.3784.7016.2918.0375.19
    Ni16.4616.2513.8313.66
    下弦布置方案2Tia5.0022.616.7437.8479.09901.124.2521.545.7033.0572.75875.41
    Tib8.1220.0415.6533.60242.25806.106.8118.9613.1329.26217.68775.56
    Via−1.00−8.69−1.00−7.61−16.11−196.21−1.00−9.87−1.00−7.91−17.64−230.33
    Vib−0.67−3.04−0.75−2.83−19.57−114.57−0.66−3.45−0.74−2.93−20.99−132.77
    Bi5.8917.683.788.1266.81266.046.3524.643.818.6174.14326.39
    Hi11.0158.975.0619.02113.25572.6011.9882.385.1720.45128.10713.77
    Nia16.6420.1991.9613.8716.9483.02
    Ni13.9415.1511.5412.64
    下弦布置方案3Tia4.3721.096.4138.0283.811088.773.7420.205.4433.5778.491100.99
    Tib7.4419.7515.2534.53271.381013.316.3519.0312.8830.52250.881023.42
    Via−1.00−9.19−1.00−8.06−17.61−248.67−1.00−10.38−1.00−8.46−19.55−302.93
    Vib−0.62−3.03−0.75−2.95−22.41−144.68−0.63−3.51−0.75−3.11−24.81−175.96
    Bi3.7311.293.257.4364.20291.333.9114.243.277.9072.02365.27
    Hi7.9738.644.4917.26104.31594.778.3547.844.5418.35117.63741.78
    Nia13.5218.5496.9211.2315.4989.13
    Ni11.1513.749.1711.39
    下载: 导出CSV

    表  4   结构高度变化时五边形三四撑杆混合型开口索穹顶预应力态索杆内力计算结果(f / L = 0.08、m = 2、δ = 2)

    Table  4   Analytical results of pretension distribution of pentagonal three-four-strut alternated cable domes with inner hole (given f / L = 0.08, m = 2 and δ=2)

    厚跨比h / L0.060.08
    厚度调整系数ξ−0.100.1−0.100.1
    计算圈数i121212121212
    上弦网格调整方案1Tia7.8264.407.9062.667.9861.188.2657.048.3256.008.3755.10
    Tib8.5033.838.6133.078.7132.429.0630.439.1429.999.2129.60
    Via−1.00−11.06−1.00−10.71−1.00−10.40−1.00−9.63−1.00−9.42−1.00−9.25
    Vib−0.69−6.84−0.68−6.31−0.68−5.87−0.64−5.02−0.64−4.71−0.63−4.45
    Bi10.0458.059.4546.558.9338.797.1727.876.8324.056.5321.20
    Hi19.54200.3218.30160.3717.22133.2013.4294.6512.6580.8911.9770.50
    Nia23.4123.7023.9624.9225.1225.30
    Ni17.5117.7517.9718.7918.9619.12
    上弦网格调整方案2Tia6.7843.036.8741.936.9441.017.2238.657.2837.987.3437.40
    Tib8.4827.468.6126.908.7226.439.1325.099.2224.759.3024.46
    Via−1.00−9.72−1.00−9.39−1.00−9.12−1.00−8.49−1.00−8.30−1.00−8.14
    Vib−0.69−5.04−0.68−4.65−0.67−4.32−0.64−3.74−0.63−3.50−0.62−3.31
    Bi9.0641.768.5533.908.1128.516.6321.106.3318.306.0716.21
    Hi17.75143.6116.67116.4015.7197.5812.4471.3911.7461.3011.1253.63
    Nia21.6822.0022.2823.3423.5723.77
    Ni17.1617.4417.6918.6318.8419.02
    上弦网格调整方案3Tia5.6127.395.7026.805.7926.316.0825.366.1524.996.2224.67
    Tib9.0523.829.2323.469.4023.169.9822.5310.1222.3110.2522.12
    Via−1.00−9.00−1.00−8.67−1.00−8.40−1.00−7.93−1.00−7.73−1.00−7.56
    Vib−0.73−3.81−0.72−3.51−0.71−3.27−0.68−2.90−0.67−2.71−0.66−2.56
    Bi7.4527.537.0822.876.7619.605.7515.365.5213.485.3212.07
    Hi14.7194.0413.8978.0313.1666.6110.7651.5710.2044.739.6939.48
    Nia18.6018.9819.3320.5420.8321.10
    Ni15.5215.8616.1817.3017.5717.82
    厚跨比h / L0.100.12
    厚度调整系数ξ−0.100.1−0.100.1
    计算圈数i121212121212
    上弦网格调整方案1Tia8.5053.378.5552.628.5851.968.6551.118.6850.528.7049.99
    Tib9.3828.759.4328.429.4828.149.5727.719.6127.459.6427.22
    Via−1.00−8.93−1.00−8.79−1.00−8.66−1.00−8.51−1.00−8.40−1.00−8.30
    Vib−0.61−4.15−0.61−3.94−0.60−3.77−0.60−3.66−0.59−3.51−0.59−3.38
    Bi5.8018.545.5716.535.3614.985.0114.224.8512.954.7011.96
    Hi10.2460.799.6953.239.1947.288.2844.447.8439.407.4535.36
    Nia25.7525.9026.0226.2526.3626.46
    Ni19.5119.6419.7619.9620.0620.15
    上弦网格调整方案2Tia7.4736.427.5135.937.5535.507.6235.037.6534.647.6834.29
    Tib9.5023.899.5723.659.6323.439.7323.149.7922.959.8322.77
    Via−1.00−7.89−1.00−7.76−1.00−7.64−1.00−7.53−1.00−7.42−1.00−7.33
    Vib−0.61−3.11−0.60−2.95−0.60−2.81−0.59−2.74−0.59−2.62−0.58−2.53
    Bi5.4414.375.2412.865.0611.704.7611.184.6110.224.489.47
    Hi9.6046.869.0941.128.6236.617.8234.677.4130.787.0427.66
    Nia24.2824.4524.6124.8725.0025.12
    Ni19.4919.6419.7920.0320.1520.26
    上弦网格调整方案3Tia6.3624.316.4124.026.4623.786.5423.636.5823.396.6123.18
    Tib10.5421.8710.6521.7110.7521.5610.9121.4510.9921.3011.0721.18
    Via−1.00−7.40−1.00−7.26−1.00−7.14−1.00−7.08−1.00−6.96−1.00−6.87
    Vib−0.65−2.43−0.64−2.30−0.64−2.19−0.63−2.15−0.63−2.06−0.62−1.98
    Bi4.8910.994.739.924.599.104.398.834.278.134.177.59
    Hi8.5235.418.0831.267.6827.977.0526.906.6823.976.3521.61
    Nia21.7121.9422.1522.4722.6622.82
    Ni18.4018.6118.8119.1119.2919.45
    下载: 导出CSV
  • [1]

    Geiger D H, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korea Olympics [C]// Shells, Membranes and Space Frame. Proceedings of International Association of Shell and Spatial Structures Symposium, Osaka, 1986, 2: 265 − 272.

    [2]

    Levy M P. The Georgia dome and beyond achieving lightweight-long span structures [C]// Proceedings of International Association of Shell and Spatial Structures ― American Society of Civil Engineering International Symposium. Atlanta, 1994: 560 − 562.

    [3] 张爱林, 刘学春, 李健, 等. 大跨度索穹顶结构模型静力试验研究[J]. 建筑结构学报, 2012, 33(4): 54 − 59.

    ZHANG Ailin, LIU Xuechun, LI Jian, et al. Static experimental study on large-span cable dome structure [J]. Journal of Building Structures, 2012, 33(4): 54 − 59. (in Chinese)

    [4] 张国军, 葛家琪, 王树, 等. 内蒙古伊旗全民健身体育中心索穹顶结构体系设计研究[J]. 建筑结构学报, 2012, 33(4): 12 − 22.

    ZHANG Guojun, GE Jiaqi, WANG Shu, et al. Design and research on cable dome structural system of the National Fitness Center in Ejin Horo Banner, Inner Mongolia [J]. Journal of Building Structures, 2012, 33(4): 12 − 22. (in Chinese)

    [5] 陈联盟. Kiewitt型索穹顶结构的理论分析和试验研究[D]. 杭州: 浙江大学, 2005.

    CHEN Lianmeng. Theoretical and experimental research of Kiewitt domes[D]. Hangzhou: Zhejiang University, 2005. (in Chinese)

    [6] 董石麟, 陈伟刚, 涂源, 等. 葵花双撑杆型索穹顶预应力及多参数敏感度分析[J]. 同济大学学报(自然科学版), 2019, 47(6): 739 − 746,801.

    DONG Shilin, CHEN Weigang, TU Yuan, et al. Analysis of multi-parameter sensitivity and prestressing force distribution of sunfolwer-type cable dome with double struts [J]. Journal of Tongji University (Natural Science), 2019, 47(6): 739 − 746,801. (in Chinese)

    [7] 张爱林, 孙超, 姜子钦. 联方型双撑杆索穹顶考虑自重的预应力计算方法[J]. 工程力学, 2017, 34(3): 211 − 218.

    ZHANG Ailin, SUN Chao, JIANG Ziqin. Calculation method of prestress distribution for levy cable dome with double struts considering self-weight [J]. Engineering Mechanics, 2017, 34(3): 211 − 218. (in Chinese)

    [8] 董石麟, 刘宏创, 朱谢联. 葵花三撑杆Ⅱ型索穹顶结构预应力态确定、参数分析及试设计[J]. 建筑结构学报, 2021, 42(1): 1 − 17.

    DONG Shilin, LIU Hongchuang, ZHU Xielian. Initial prestress determination, parametric analysis and tentative design of a novel Levy-type cable dome structure with tri-strut layout [J]. Journal of Building Structures, 2021, 42(1): 1 − 17. (in Chinese)

    [9] 包红泽, 董石麟. 鸟巢型索穹顶结构的静力性能分析[J]. 建筑结构, 2008, 38(11): 11 − 13,39.

    BAO Hongze, DONG Shilin. Analyses on functions of static mechanic in bird-nest cable dome [J]. Building Structure, 2008, 38(11): 11 − 13,39. (in Chinese)

    [10] 董石麟, 刘宏创. 鸟巢四撑杆型索穹顶大开口体育场挑篷结构形态确定、参数分析及试设计[J]. 空间结构, 2020, 26(3): 3 − 15.

    DONG Shilin, LIU Hongchuang. Morphologic determination, parametric analysis and tentative design of a novel bird nest-type cable dome structure with quad-strut layout as stadium canopy [J]. Spatial Structures, 2020, 26(3): 3 − 15. (in Chinese)

    [11] 董石麟, 陈伟刚, 涂源, 等. 蜂窝三撑杆型索穹顶结构构形和预应力态分析研究[J]. 工程力学, 2019, 36(9): 128 − 135. doi: 10.6052/j.issn.1000-4750.2018.08.0438

    DONG Shilin, CHEN Weigang, TU Yuan, et al. Configuration and prestressing distribution of the honeycomb-type cable dome with three struts [J]. Engineering Mechanics, 2019, 36(9): 128 − 135. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.0438

    [12] 董石麟, 涂源. 蜂窝四撑杆型索穹顶的构形和预应力分析方法[J]. 空间结构, 2018, 24(2): 3 − 12.

    DONG Shilin, TU Yuan. Configuration and prestress distribution of honeycomb-type cable dome with four struts [J]. Spatial Structures, 2018, 24(2): 3 − 12. (in Chinese)

    [13] 董石麟, 王艺达, 刘宏创. 鼓蜂窝序列多撑杆型索穹顶结构体系创新研究及预应力态分析[J]. 空间结构, 2022, 28(3): 3 − 15.

    DONG Shilin, WANG Yida, LIU Hongchuang. Structural form innovation and initial prestress analysis on drum-shaped honeycomb-type cable domes with multi-strut layout [J]. Spatial Structures, 2022, 28(3): 3 − 15. (in Chinese)

    [14] 董石麟, 吕辉, 陈照全, 等. 鼓蜂窝四撑杆型索穹顶的结构构形及预应力态分析[J]. 空间结构, 2022, 28(4): 3 − 15.

    DONG Shilin, LV Hui, CHEN Zhaoquan, et al. Structural form and initial prestress analysis on drum-shaped honeycomb-type cable dome with quad-strut layout [J]. Spatial Structures, 2022, 28(4): 3 − 15. (in Chinese)

    [15] 向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法——预载回弹法[J]. 工程力学, 2019, 36(2): 45 − 52. doi: 10.6052/j.issn.1000-4750.2017.12.0971

    XIANG Xin’an, FENG Yuan, DONG Shilin. A new method of determining the initial prestress distribution of cable domes — the preload and rebound method [J]. Engineering Mechanics, 2019, 36(2): 45 − 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0971

    [16] 张爱林, 白羽, 刘学春, 等. 新型脊杆环撑索穹顶结构静力性能分析[J]. 空间结构, 2017, 23(3): 11 − 20.

    ZHANG Ailin, BAI Yu, LIU Xuechun, et al. Static behavior analysis of new-type ridge tube cable dome with annular struts [J]. Spatial Structures, 2017, 23(3): 11 − 20. (in Chinese)

    [17] 刘廷勇, 张爱林, 李久林. 大跨度装配式脊杆环撑索穹顶预应力分布与结构性能研究[J/OL]. 工程力学, 1-12. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.02.0131?viewType=HTML, 2023-10-09.

    LIU Tingyong, ZHANG Ailin, LI Jiulin. Study on prestress distribution and structural performance of long-span assembled ridge ring cable dome[J/OL]. Engineering Mechanics, 1-12. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.02.0131?viewType=HTML, 2023-10-09. (in Chinese)

    [18] 张爱林, 朱莉娜, 张艳霞, 等. 星形四面体型索穹顶构形和预应力分析方法[J]. 振动与冲击, 2021, 40(9): 84 − 91.

    ZHANG Ailin, ZHU Li’na, ZHANG Yanxia, et al. Configuration and prestress analysis method of star shaped tetrahedral cable dome [J]. Journal of Vibration and Shock, 2021, 40(9): 84 − 91. (in Chinese)

    [19] 张爱林, 文闻, 张艳霞, 等. 空间三撑杆双环索索穹顶考虑自重的预应力计算方法及参数分析[J]. 工程力学, 2020, 37(5): 36 − 45. doi: 10.6052/j.issn.1000-4750.2019.07.0403

    ZHANG Ailin, WEN Wen, ZHANG Yanxia, et al. Calculation method and parametric analysis of prestress distribution for cable domes with spatial three-struts and double-hoop cables considering the self-weight [J]. Engineering Mechanics, 2020, 37(5): 36 − 45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0403

    [20]

    ZHANG P, ZHOU J K, CHEN J S. Form-finding of complex tensegrity structures using constrained optimization method [J]. Composite Structures, 2021, 268: 113971. doi: 10.1016/j.compstruct.2021.113971

    [21]

    WANG Y F, XU X, LUO Y Z. A unifying framework for form-finding and topology-finding of tensegrity structures [J]. Computers & Structures, 2021, 247: 106486.

    [22]

    ZHU M L, PENG Y F, MA W N, et al. Artificial neural network-aided force finding of cable dome structures with diverse integral self-stress states-framework and case study [J]. Engineering Structures, 2023, 285: 116004. doi: 10.1016/j.engstruct.2023.116004

    [23]

    KABASI S, MARBANIANG A L, GHOSH S. Physics-informed neural networks for the form-finding of tensile membranes by solving the Euler–Lagrange equation of minimal surfaces [J]. Thin-Walled Structures, 2023, 182: 110309. doi: 10.1016/j.tws.2022.110309

    [24]

    FAN L Z, XU R Z, SHI P, et al. Simplified form-finding for tensegrity structures through reference joints of symmetry orbits [J]. Structures, 2023, 49: 1157 − 1167. doi: 10.1016/j.istruc.2023.02.006

    [25]

    ZHANG Q, WANG X Y, CAI J G, et al. Prestress design for cable-strut structures by grouping elements [J]. Engineering Structures, 2021, 244: 112010. doi: 10.1016/j.engstruct.2021.112010

    [26] 闫翔宇, 马青, 陈志华, 等. 天津理工大学体育馆复合式索穹顶结构分析与设计[J]. 建筑钢结构进展, 2019, 21(1): 23 − 29,44. doi: 10.13969/j.cnki.cn31-1893.2019.01.003

    YAN Xiangyu, MA Qing, CHEN Zhihua, et al. Analysis and design of the hybrid-form cable dome of the gymnasium in Tianjin University of technology [J]. Progress in Steel Structure of Buildings, 2019, 21(1): 23 − 29,44. (in Chinese) doi: 10.13969/j.cnki.cn31-1893.2019.01.003

    [27] 冯远, 向新岸, 董石麟, 等. 雅安天全体育馆金属屋面索穹顶设计研究[J]. 空间结构, 2019, 25(1): 3 − 13. doi: 10.13849/j.issn.1006-6578.2019.01.003

    FENG Yuan, XIANG Xin’an, DONG Shilin, et al. Design and research on tensegrity type cable dome with metal roof of Ya’an Tianquan Gymnasium [J]. Spatial Structures, 2019, 25(1): 3 − 13. (in Chinese) doi: 10.13849/j.issn.1006-6578.2019.01.003

    [28] 冯远, 王立维, 张彦, 等. 成都凤凰山专业足球场结构设计[J]. 建筑结构, 2020, 50(19): 15 − 21,14.

    FENG Yuan, WANG Liwei, ZHANG Yan, et al. Structural design of Chengdu Fenghuangshan professional football field [J]. Building Structure, 2020, 50(19): 15 − 21,14. (in Chinese)

    [29] 董石麟, 涂源. 索穹顶结构体系创新研究[J]. 建筑结构学报, 2018, 39(10): 85 − 92. doi: 10.14006/j.jzjgxb.2018.10.010

    DONG Shilin, TU Yuan. Structural system innovation of cable dome structures [J]. Journal of Building Structures, 2018, 39(10): 85 − 92. (in Chinese) doi: 10.14006/j.jzjgxb.2018.10.010

图(6)  /  表(4)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  8
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-10-16
  • 网络出版日期:  2023-11-23

目录

/

返回文章
返回