EFFECT OF SHEAR-SPAN RATIO ON SIZE EFFECT OF SHEAR STRENGTH OF CFRP-STRENGTHENED CONCRETE BEAMS WITHOUT STIRRUPS: TESTS AND FORMULATION VALIDATION
-
摘要:
剪跨比是影响混凝土构件抗剪性能的重要因素。设计了16根不同截面尺寸(最大梁高为1200 mm)和不同剪跨比(λ = 1.0, 1.5, 2.0)的U型CFRP条带包裹无腹筋钢筋混凝土简支梁剪切破坏试验。讨论了不同截面尺寸下剪跨比影响的CFRP加固无腹筋钢筋混凝土梁剪切破坏力学响应,揭示了剪跨比对CFRP加固无腹筋梁抗剪强度及尺寸效应的定量影响,对比分析了已建立尺寸效应律的合理性与准确性。发现:试验中U型CFRP粘贴的无腹筋钢筋混凝土加固梁均发生剪切破坏,CFRP条带均发生剥离;梁高为1200 mm的加固梁,随着剪跨比的增大(由1.0增长为2.0),抗剪承载力分别降低27%及55%(相比于剪跨比为1.0的梁);不同剪跨比的梁,其名义抗剪强度随尺寸下降的趋势均非常明显,最多达到43%降幅;JIN等提出的抗剪强度尺寸效应公式可较为准确的描述剪跨比对不同尺寸CFRP加固无腹筋钢筋混凝土梁抗剪强度的定量影响。
-
关键词:
- CFRP加固混凝土梁 /
- 剪跨比 /
- 剪切破坏 /
- 试验研究 /
- 尺寸效应律
Abstract:The shear-span ratio is an important factor affecting the shear performance of concrete members. This work conducted 16 beams with different section sizes (maximum beam height is 1200 mm) and different shear span ratios (λ= 1.0, 1.5, 2.0). The shear failure behavior of CFRP-strengthened reinforced concrete beams without stirrups under different shear-span ratios and cross-section sizes was studied, and the quantitative influence of shear-span ratio on shear strength and size effect of CFRP-strengthened reinforced concrete beams without stirrups was revealed. The rationality and accuracy of the established size effect law was compared and analyzed. It was found that shear failure and the debonding of CFRP sheets occurred in the U-type CFRP bonded reinforced concrete beams. The shear-span ratio has little effect on the size effect of the shear strength of the strengthened beam, but the value of the shear strength has a great effect. For example, in a 1200 mm depth strengthened-beam, with the increase of shear-span ratio (from 1.0 to 2.0), compared with the beam with a shear-span ratio of 1.0, the shear capacity is reduced by 27% and 55%. In addition, the nominal shear strength of beams with different shear-span ratios decreases 43% with increasing beam size. Moreover, the size effect law of shear strength proposed in the previous study could describe the quantitative influence of shear-span ratio on the shear strength of CFRP-strengthened concrete beams with different cross-sectional dimensions accurately.
-
Keywords:
- CFRP-wrapped beams /
- shear-span ratio /
- shear failure /
- experimental investigation /
- size effect law
-
-
表 1 试件几何参数
Table 1 Geometrical dimensions of tested specimens
试件 梁高
h/mm有效高度h0/mm 剪跨比
λ配纤率ρf/(%) CFRP宽wf/mm CFRP间距
sf/mmCFRP厚度
tf/mmSC-1.0 300 245 1.0 − − − − S-1.0 300 245 1.0 0.0835 30 120 0.167 S-1.5 300 245 1.5 0.0835 50 200 0.167 S-2.0 300 245 2.0 0.0835 50 200 0.167 MC-1.0 600 507 1.0 − − − − M-1.0 600 507 1.0 0.0835 60 240 0.334 M-1.5 600 507 1.5 0.0835 100 400 0.334 M-2.0 600 507 2.0 0.0835 100 400 0.334 LC-1.0 900 784 1.0 − − − − L-1.0 900 784 1.0 0.0835 90 360 0.501 L-1.5 900 784 1.5 0.0835 150 600 0.501 L-2.0 900 784 2.0 0.0835 150 600 0.501 UC-1.0 1200 1027 1.0 − − − − U-1.0 1200 1027 1.0 0.0835 120 480 0.668 U-1.5 1200 1027 1.5 0.0835 200 800 0.668 U-2.0 1200 1027 2.0 0.0835 200 800 0.668 表 2 CFRP条带条带力学性能
Table 2 Mechanical properties of CFRP strips
密度
ρ/(g/cm3)单层厚度
tf/mm抗拉强度
σt/MPa弹性模量
E/GPa极限应变
ε1.8 0.167 3820 232 0.016 表 3 环氧树脂力学性能
Table 3 Mechanical properties of epoxy adhesive
抗拉强度σt/MPa 弹性模量E/GPa 伸长率s/(%) 42 2512 1.8 表 4 试验结果
Table 4 Experimental results
试件
名称弯曲开裂荷载Pcr/kN 破坏荷载Pu/kN 初始斜裂缝荷载Vcr/kN 最大剪力Vu/kN 跨中位移Δ/mm SC-1.0 25 301.0 63 150.5 5.74 S-1.0 47 342.7 71 171.4 5.43 S-1.5 48 248.5 76 124.3 5.76 S-2.0 15 179.2 36 89.6 5.75 MC-1.0 65 1173.9 390 587.0 7.24 M-1.0 62 1327.9 370 664.0 7.06 M-1.5 60 977.8 305 488.9 8.54 M-2.0 30 554.2 80 277.1 8.19 LC-1.0 72 2516.0 450 1258.0 11.88 L-1.0 90 2524.9 743 1262.5 10.67 L-1.5 82 1628.3 684 816.4 11.85 L-2.0 50 1281.8 300 640.9 11.70 UC-1.0 85 3553.2 612 1776.6 13.90 U-1.0 102 3830.4 821 1915.2 12.78 U-1.5 100 2798.3 720 1399.2 15.62 U-2.0 76 1711.8 589 855.9 13.01 表 5 不同剪跨比下所对应的v0和d0数值
Table 5 v0 and d0 values corresponding to different shear-span ratios
剪跨比λ 系数v0 系数d0 1.0(普通梁) 8.2 490.0 1.0(加固梁) 10.4 306.7 1.5(加固梁) 7.6 288.3 2.0(加固梁) 5.2 244.0 -
[1] 王作虎, 刘晶波, 杜修力. FRP加固钢筋混凝土结构尺寸效应的研究进展[J]. 建筑科学与工程学报, 2011, 28(3): 49 − 55. doi: 10.19815/j.jace.2011.03.008 WANG Zuohu, LIU Jingbo, DU Xiuli. Research progress of size effect on reinforced concrete structures strengthened with FRP [J]. Journal of Architecture and Civil Engineering, 2011, 28(3): 49 − 55. (in Chinese) doi: 10.19815/j.jace.2011.03.008
[2] 张丰宇, 何佰昭, 吴应雄, 等. CFRP板加固既有石楼板抗弯性能试验研究[J]. 工程力学, 2024. doi: 10.6052/j.issn.1000-4750.2022.08.0722 ZHANG Fengyu, HE Baizhao, WU Yingxiong, et al. Experimental study on flexural behavior of existing stone slabs strengthened by CFRP plate [J]. Engineering Mechanics, 2024. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.08.0722
[3] 张书颖, 陈适之, 韩万水, 等. 基于集成学习的FRP加固混凝土梁抗弯承载力预测研究[J]. 工程力学, 2022, 39(8): 245 − 256. doi: 10.6052/j.issn.1000-4750.2021.06.0422 ZHANG Shuying, CHEN Shizhi, HAN Wanshui, et al. Study on prediction of FRP strengthened reinforced concrete beam’s moment bearing capacity based on ensemble learning algorithm [J]. Engineering Mechanics, 2022, 39(8): 245 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0422
[4] JIN L, JIANG X A, DU X L. Novel size-effect law for shear strength of CFRP-strengthened lightweight concrete deep beams without stirrups [J]. Journal of Composites for Construction, 2022, 26(1): 04021065. doi: 10.1061/(ASCE)CC.1943-5614.0001172
[5] 叶列平, 赵树红, 李全旺, 等. 碳纤维布加固混凝土柱的斜截面受剪承载力计算[J]. 建筑结构学报, 2000, 21(2): 59 − 67. YE Lieping, ZHAO Shuhong, LI Quanwang, et al. Calculation of shear strength of concrete column strengthened with carbon fiber reinforced plastic sheet [J]. Journal of Building Structures, 2000, 21(2): 59 − 67. (in Chinese)
[6] 孙艺嘉, 吴涛, 刘喜. 无粘结预应力CFRP筋钢纤维轻骨料混凝土梁受弯性能试验研究[J]. 工程力学, 2022, 39(3): 64 − 74. doi: 10.6052/j.issn.1000-4750.2020.12.0940 SUN Yijia, WU Tao, LIU Xi. Flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams prestressed with carbon fiber-reinforced polymer bars [J]. Engineering Mechanics, 2022, 39(3): 64 − 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0940
[7] 郝震. 外贴碳纤维(CFRP)加固梁斜截面受力性能的实验研究[D]. 南京: 东南大学, 2004. HAO Zhen. Experimental study on shear behaviors for beams strengthened with externally bonded CFRP sheets [D]. Nanjing: Southeast University, 2004. (in Chinese)
[8] ALHAMAD S, AL BANNA Y, AL OSMAN A, et al. Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams [J]. MATEC Web of Conferences, 2017, 120: 01012. doi: 10.1051/matecconf/201712001012
[9] 周朝阳, 谭磊, 程小念. FRP抗剪加固钢筋混凝土梁研究综述[J]. 建筑科学与工程学报, 2011, 28(2): 1 − 7. ZHOU Chaoyang, TAN Lei, CHENG Xiaonian. Review of research on reinforced concrete beams shear-strengthened with FRP [J]. Journal of Architecture and Civil Engineering, 2011, 28(2): 1 − 7. (in Chinese)
[10] ARY M I, KANG T H K. Shear-strengthening of reinforced & prestressed concrete beams using FRP: Part I-Review of previous research [J]. International Journal of Concrete Structures and Materials, 2012, 6(1): 41 − 47. doi: 10.1007/s40069-012-0004-1
[11] LI W W, LEUNG C K Y. Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips [J]. Composite Structures, 2017, 177: 141 − 157. doi: 10.1016/j.compstruct.2017.06.059
[12] AL-SAAWANI M A, EL-SAYED A K, AL-NEGHEIMISH A I. Effect of shear-span/depth ratio on debonding failures of FRP-strengthened RC beams [J]. Journal of Building Engineering, 2020, 32: 101771. doi: 10.1016/j.jobe.2020.101771
[13] MAHBOOB A, GIL L, BERNAT-MASO E, et al. Experimental and numerical study of shear interface response of hybrid thin CFRP-concrete slabs [J]. Materials, 2021, 14(18): 5184. doi: 10.3390/ma14185184
[14] MAALEJ M, LEONG K S. Effect of beam size and FRP thickness on interfacial shear stress concentration and failure mode of FRP-strengthened beams [J]. Composites Science and Technology, 2005, 65(7/8): 1148 − 1158.
[15] BOUSSELHAM A, CHAALLAL O. Shear strengthening reinforced concrete beams with fiber-reinforced polymer: Assessment of influencing parameters and required research [J]. ACI Structural Journal, 2004, 101(2): 219 − 227.
[16] ALAM M S, HUSSEIN A. Size effect on shear strength of FRP reinforced concrete beams without stirrups [J]. Journal of Composites for Construction, 2013, 17(4): 507 − 516. doi: 10.1061/(ASCE)CC.1943-5614.0000346
[17] LEUNG C K Y, CHEN Z F, LEE S, et al. Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips [J]. Journal of Composites for Construction, 2007, 11(5): 487 − 496. doi: 10.1061/(ASCE)1090-0268(2007)11:5(487)
[18] ALHASSAN M A, AL-ROUSAN R Z, ALOMARI I S, et al. Shear response of RC beams encompassing hybrid CFRP strips and steel stirrups: Beam depth effect [J]. Structures, 2022, 38: 781 − 796. doi: 10.1016/j.istruc.2022.02.043
[19] BENZEGUIR Z E A, EL-SAIKALY G, CHAALLAL O. Size effect in RC T-beams strengthened in shear with externally bonded CFRP sheets: Experimental study [J]. Journal of Composites for Construction, 2019, 23(6): 04019048. doi: 10.1061/(ASCE)CC.1943-5614.0000975
[20] AL-ROUSAN R Z, ISSA M A. The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber–reinforced polymer composites [J]. Advances in Structural Engineering, 2016, 19(11): 1769 − 1779. doi: 10.1177/1369433216649386
[21] BENZEGUIR Z E A, EL-SAIKALY G, CHAALLAL O. Size effect of RC T-beams strengthened in shear with externally bonded CFRP L-shaped laminates [J]. Journal of Composites for Construction, 2020, 24(4): 04020031. doi: 10.1061/(ASCE)CC.1943-5614.0001045
[22] COLLINS M P, KUCHMA D. How safe are our large, lightly reinforced concrete beams, slabs, and footings? [J]. ACI Structural Journal, 1999, 96(4): 482 − 490.
[23] LUBELL A, SHERWOOD T, BENTZ E, et al. Safe shear design of large wide beams [J]. ACI Concrete International, 2004, 26(1): 66 − 78.
[24] BAŽANT Z P, YU Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups: I. Formulation [J]. Journal of Structural Engineering, 2005, 131(12): 1877 − 1885. doi: 10.1061/(ASCE)0733-9445(2005)131:12(1877)
[25] BAŽANT Z P, YU Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups: II. Verification and calibration [J]. Journal of Structural Engineering, 2005, 131(12): 1886 − 1897. doi: 10.1061/(ASCE)0733-9445(2005)131:12(1886)
[26] 陆新征, 叶列平, 滕锦光, 等. FRP片材与混凝土粘结性能的精细有限元分析[J]. 工程力学, 2006, 23(5): 74 − 82. doi: 10.3969/j.issn.1000-4750.2006.05.014 LU Xinzheng, YE Lieping, TENG Jinguang, et al. Meso-scale finite element analysis of FRP-to-concrete bond behavior [J]. Engineering Mechanics, 2006, 23(5): 74 − 82. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.05.014
[27] GB 50367−2013, 混凝土结构加固设计规范[S]. 北京: 中国建筑工业出版社, 2014. GB 50367−2013, Code for design of strengthening concrete structure [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
[28] BUKHARI I A, VOLLUM R L, AHMAD S, et al. Shear strengthening of reinforced concrete beams with CFRP [J]. Magazine of Concrete Research, 2010, 62(1): 65 − 77. doi: 10.1680/macr.2008.62.1.65
[29] GODAT A, LABOSSIÈRE P, NEALE K W. Numerical investigation of the parameters influencing the behaviour of FRP shear-strengthened beams [J]. Construction and Building Materials, 2012, 32: 90 − 98. doi: 10.1016/j.conbuildmat.2010.11.110
[30] 金浏, 夏海, 蒋轩昂, 等. 剪跨比对CFRP加固无腹筋混凝土梁剪切破坏及尺寸效应的影响研究[J]. 工程力学, 2021, 38(3): 50 − 59, 85. doi: 10.6052/j.issn.1000-4750.2020.01.0028 JIN Liu, XIA Hai, JIANG Xuan’ang, et al. Effect of shear-span ratio on shear failure and size effect of concrete beams without web reinforcement strengthened by CFRP [J]. Engineering Mechanics, 2021, 38(3): 50 − 59, 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0028
[31] GB/T 50081−2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019. GB/T 50081−2019, Standard for test methods of concrete physical and mechanical properties [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
[32] GB/T 3354−2014, 定向纤维增强聚合物基复合材料拉伸性能试验方法[S]. 北京: 中国标准版社, 2015. GB/T 3354−2014, Test method for tensile properties of orientation fiber reinforced polymer matrix composite material [S]. Beijing: Standards Press of China, 2014. (in Chinese)
[33] GB/T 2567−2021, 树脂浇铸体性能试验方法[S]. 北京: 中国标准出版社, 2021. GB/T 2567−2021, Test methods for properties of resin casting body [S]. Beijing: Standards Press of China, 2021. (in Chinese)
[34] MURPHY M, BELARBI A, BAE S W. Behavior of prestressed concrete I-girders strengthened in shear with externally bonded fiber-reinforced-polymer sheets [J]. PCI Journal, 2012, 57(3): 63 − 82. doi: 10.15554/pcij.06012012.63.82
[35] EL-SAYED A K, SHURAIM A B. Size effect on shear resistance of high strength concrete deep beams [J]. Materials and Structures, 2016, 49(5): 1871 − 1882. doi: 10.1617/s11527-015-0619-1
[36] LI W W, LEUNG C K Y. Shear span–depth ratio effect on behavior of RC beam shear strengthened with full-wrapping FRP strip [J]. Journal of Composites for Construction, 2016, 20(3): 04015067. doi: 10.1061/(ASCE)CC.1943-5614.0000627
[37] JIN L, JIANG X A, XIA H, et al. Size effect in shear failure of lightweight concrete beams wrapped with CFRP without stirrups: Influence of fiber ratio [J]. Composites Part B:Engineering, 2020, 199: 108257. doi: 10.1016/j.compositesb.2020.108257
[38] BOUSSELHAM A, CHAALLAL O. Experimental investigations on the influence of size on the performance of RC T-beams retrofitted in shear with CFRP fabrics [J]. Engineering Structures, 2013, 56: 1070 − 1079. doi: 10.1016/j.engstruct.2013.06.028
[39] QU Z, LU X Z, YE L P. Size effect of shear contribution of externally bonded FRP U-jackets for RC beams [C]// Proceedings of International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005). Hong Kong, China: BBFS, 2005: 363 − 371.
[40] BAŽANT Z P. Size effect in blunt fracture: Concrete, rock, metal [J]. Journal of Engineering Mechanics, 1984, 110(4): 518 − 535. doi: 10.1061/(ASCE)0733-9399(1984)110:4(518)
[41] BAŽANT Z P. Scaling theory for quasibrittle structural failure [J]. Proceedings of the National Academy of Sciences, 2004, 101(37): 13400 − 13407.
[42] BAŽANT Z P, PLANAS J. Fracture and size effect in concrete and other quasibrittle materials [M]. New York: Routledge, 2019: 326 − 334.
[43] KOTSOVOS M D, PAVLOVIĆ M N. Size effects in beams with small shear span-to-depth ratios [J]. Computers & Structures, 2004, 82(2/3): 143 − 156.
[44] ZHANG F B, XU J, ESTHER B, et al. Effect of shear span-to-depth ratio on the mechanical behavior of composite sandwich beams with GFRP ribs and balsa wood core materials [J]. Thin-Walled Structures, 2020, 154: 106799. doi: 10.1016/j.tws.2020.106799
[45] VEGERA P, VASHKEVYCH R, BLIKHARSKYY Z. Fracture toughness of RC beams with different shear span [J]. MATEC Web of Conferences, 2018, 174: 02021. doi: 10.1051/matecconf/201817402021
[46] FERDOUS W, MANALO A, ARAVINTHAN T. Effect of beam orientation on the static behaviour of phenolic core sandwich composites with different shear span-to-depth ratios [J]. Composite Structures, 2017, 168: 292 − 304. doi: 10.1016/j.compstruct.2017.02.061
-
期刊类型引用(20)
1. 房辰泽,郭乃胜,李辉,褚召阳,刘涛. 基于动力学理论的沥青疲劳损伤过程表征研究. 中国公路学报. 2025(03): 241-249 . 百度学术
2. 闫景晨,马苗苗,张威,高宏彬. 盐冻融条件下环氧沥青混凝土多尺度疲劳开裂特性. 建筑材料学报. 2025(03): 283-290 . 百度学术
3. 王佳妮,高世杰,董元帅,田佳磊. 沥青混合料疲劳损伤试验表征综述. 科学技术与工程. 2024(07): 2625-2637 . 百度学术
4. 房辰泽,冷真,郭乃胜,李辉,蒋继望,陆国阳,王昊鹏. 考虑加载次序影响的沥青非线性疲劳损伤累积研究. 工程力学. 2024(05): 68-76 . 本站查看
5. 李昌辉,倪广聪,徐希忠,陈婷婷,王琳,张晓萌,韩文扬,孙强. 不同胶粉掺量下橡胶沥青混合料路用性能分析. 科学技术与工程. 2023(06): 2595-2605 . 百度学术
6. 鞠达,何平. 橡胶粉掺量对沥青混合料水稳定性影响分析——基于冻融循环条件的试验. 粘接. 2023(04): 153-157 . 百度学术
7. 闫景晨,马炎沛,闫俊杰. 不同重复加载频率下老化沥青混凝土开裂性能. 中外公路. 2023(02): 219-226 . 百度学术
8. 司伟,张博文,杨若聪,李政雄,乔次仁,马骉. 青藏高寒区基于真实环境冻融作用的沥青混合料冻融疲劳破坏表征. 长安大学学报(自然科学版). 2023(03): 11-21 . 百度学术
9. 石福周,张晋源,陈永峰,俞树俊. 多孔低噪路面沥青混合料承载疲劳预测仿真. 计算机仿真. 2023(07): 138-141+153 . 百度学术
10. 房辰泽,郭乃胜,蒋继望,冷真,李辉,陆国阳,王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响. 材料导报. 2023(24): 178-183 . 百度学术
11. 符东绪,徐希忠,胡家波,狄恩州. 干法胶粉大粒径沥青混合料疲劳损伤研究. 山东交通科技. 2023(05): 10-12+34 . 百度学术
12. 闫景晨,李欣,马炎沛. 布敦岩沥青混凝土低温宏细观多尺度开裂特性. 中国科技论文. 2022(07): 731-738 . 百度学术
13. 陈戈雨,郭鹏,曹志国. 沥青混合料疲劳损伤模拟研究. 计算机仿真. 2022(08): 296-299+502 . 百度学术
14. 高生芳. 高寒高海拔地区TOR/胶粉改性沥青老化性能评价. 青海交通科技. 2022(05): 96-103 . 百度学术
15. 郗彦林. 基于流固耦合仿真分析的多拱桥梁结构改进设计研究. 青海交通科技. 2022(05): 104-112+135 . 百度学术
16. 曹西宁. 基于正交试验设计的橡胶沥青性能影响因素研究. 中国建材科技. 2021(01): 78-81 . 百度学术
17. 殷卫永,王笑风,吴靖江,郭永富,张永. 胶粉复合改性沥青混合料疲劳性能. 河南科学. 2021(08): 1257-1263 . 百度学术
18. 刘新成. 沥青混合料离析对沥青混凝土路面疲劳寿命的影响. 工程技术研究. 2021(09): 125-126 . 百度学术
19. 房辰泽,郭乃胜,尤占平,谭忆秋,王淋,温彦凯. 基于能量耗散历史的沥青混合料疲劳损伤特性研究. 东南大学学报(自然科学版). 2021(06): 1018-1024 . 百度学术
20. 程于航,邹蔚然. 沥青路面疲劳性能影响因素分析. 四川水泥. 2020(05): 50 . 百度学术
其他类型引用(5)