钢拉杆受力性能试验研究

刘涛, 熊家鑫, 范重, 赵作周, 孙立领, 张爱林, 张艳霞, 崔喆, 葛红斌, 黄进芳

刘涛, 熊家鑫, 范重, 赵作周, 孙立领, 张爱林, 张艳霞, 崔喆, 葛红斌, 黄进芳. 钢拉杆受力性能试验研究[J]. 工程力学, 2023, 40(S): 126-135, 157. DOI: 10.6052/j.issn.1000-4750.2022.05.S030
引用本文: 刘涛, 熊家鑫, 范重, 赵作周, 孙立领, 张爱林, 张艳霞, 崔喆, 葛红斌, 黄进芳. 钢拉杆受力性能试验研究[J]. 工程力学, 2023, 40(S): 126-135, 157. DOI: 10.6052/j.issn.1000-4750.2022.05.S030
LIU Tao, XIONG Jia-xin, FAN Zhong, ZHAO Zuo-zhou, SUN Li-ling, ZHANG Ai-lin, ZHANG Yan-xia, CUI Zhe, GE Hong-bin, HUANG Jin-fang. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STEEL TIE RODS[J]. Engineering Mechanics, 2023, 40(S): 126-135, 157. DOI: 10.6052/j.issn.1000-4750.2022.05.S030
Citation: LIU Tao, XIONG Jia-xin, FAN Zhong, ZHAO Zuo-zhou, SUN Li-ling, ZHANG Ai-lin, ZHANG Yan-xia, CUI Zhe, GE Hong-bin, HUANG Jin-fang. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STEEL TIE RODS[J]. Engineering Mechanics, 2023, 40(S): 126-135, 157. DOI: 10.6052/j.issn.1000-4750.2022.05.S030

钢拉杆受力性能试验研究

基金项目: 中国建筑设计研究院有限公司科技创新项目(1100C080220338)
详细信息
    作者简介:

    刘 涛(1998−),男,湖南人,工程师,硕士,主要从事大跨度结构设计研究(E-mail: 2016130@cadg.cn)

    熊家鑫(1998−),男,江西人,硕士生,主要从事结构工程与钢结构设计研究(E-mail: xiongjiaxin1998@163.com)

    赵作周(1967−),男,甘肃人,副教授,博士,主要从事结构工程抗震研究(E-mail: zzzhao@tsinghua.edu.cn)

    孙立领(1984−),男,河北人,工程师,学士,主要从事机械工程研究(E-mail: sunlljl@163.com)

    张爱林(1961−),男,山东人,教授,博士,主要从事大跨度预应力与高层装配式钢结构研究(E-mail: Zhangailin@bucea.edu.cn)

    张艳霞(1967−),女,吉林人,教授,博士,主要从事多高层钢结构与大跨钢结构研究(E-mail: Zhangyanxia@bucea.edu.cn)

    崔 喆(1967−),男,河北人,工程师,学士,主要从事机械工程研究(E-mail: 928317971@qq.com)

    葛红斌(1969−),男,福建人,高工,硕士,主要从事机场工程技术研究(E-mail: 13950001889@139.com)

    黄进芳(1980−),男,福建人,工程师,学士,主要从事建筑结构技术研究(E-mail: hjfdzyx@163.com)

    通讯作者:

    范 重(1959−),男,北京人,教授级高工,博士,主要从事建筑结构设计研究(E-mail: fanz@cadg.cn)

  • 中图分类号: TU391

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STEEL TIE RODS

  • 摘要: 为了考察钢拉杆在不同受力条件下的力学性能,对10根GLG650钢拉杆试件分别进行单调受拉和低周往复拉压试验,得到钢拉杆的荷载-位移曲线、屈服承载力、最大承载力、极限承载力以及相应的变形和破坏形态。试验及分析结果表明:钢拉杆屈服强化阶段,荷载-位移曲线接近于直线;在往复拉压作用下,长细比较小的钢拉杆荷载-位移曲线出现循环软化现象。受拉屈服后,随着钢拉杆轴向变形加大,反向受压时其侧向挠曲变形随之增大,杆件中部在压弯作用下进入屈服。钢拉杆的断后伸长率约为3.4%~6.8%,远小于钢材试样的破断伸长率。钢拉杆破断多发生在加载端或固定端,受压弯累计塑性损伤的影响,长细比较小时杆件中部破断的情况增多。根据受力特征点确定的钢拉杆荷载-位移滞回规则,可供在往复荷载作用下弹塑性计算分析时应用。
    Abstract: In order to investigate the mechanical properties of steel tie rods under different loading conditions, the monotonic tension and low-cycle reciprocating tension and compression experiment was carried out on ten GLG650 steel tie rod specimens. The load-displacement curves, yield bearing capacity, maximum bearing capacity and ultimate bearing capacity of the steel tie rods and corresponding deformation and failure modes were obtained. The results of experiment and analysis show that the load-displacement curve of the steel tie rod is close to a straight line in the yield strengthening stage, and the load-displacement curves of the steel tie rods with smaller slenderness exhibit cyclic softening phenomenon under reciprocating tension and compression. After yielding in tension, as the axial deformation of the steel tie rod increases, its lateral deflection increases with the reverse compression, and the middle part of the rod enters into yield under compression and bending. The elongation after fracture of the steel tie rods is about 3.4% to 6.8%, which is much smaller than the elongation at breakage of the steel sample. Though the fracture mostly occurs at the loading end or fixed end, the fracture in the middle of the bar increases when the slenderness ratio is small, due to plastic damage accumulation under compression and bending. The load-displacement hysteresis rule of the steel tie rod determined according to the characteristic points can be used for elastic-plastic analysis under reciprocating load.
  • 图  1   钢拉杆试件尺寸示意图 /mm

    Figure  1.   Schematic diagram of the dimensions of the steel tie rod specimens

    图  2   加载装置图 /mm

    Figure  2.   Loading device diagram

    图  3   测试仪器布置图 /mm

    Figure  3.   Measuring instrument layout

    图  4   往复拉压加载制度

    Figure  4.   Cyclic tension and compression loading procedure

    图  5   钢拉杆单调受拉荷载-位移曲线

    Figure  5.   Monotonic tensile load-displacement curves of the steel tie rods

    图  6   MON-D30-2试件单调受拉破坏情况

    Figure  6.   Failure of MON-D30-2 under monotonic tension

    7   钢拉杆往复拉压时的荷载-变形曲线

    7.   Load-displacement curves of steel tie rods under cyclic tension and compression

    图  8   CYC-D30-1试件在往复拉压时的破坏情况

    Figure  8.   Failure of CYC-D30-1 under cyclic tension and compression

    图  9   钢拉杆轴向压力-位移曲线

    Figure  9.   Axial pressure-displacement curve of the steel tie rod

    图  10   钢拉杆受压屈曲变形

    Figure  10.   Buckling deflection of steel tie rod under compression

    图  11   钢拉杆压弯屈服变形与杆件长细比的关系

    Figure  11.   Relationship between the yield lateral deflection under compression-bending and slenderness ratio of the steel rod

    图  12   钢拉杆受压侧向挠曲变形与轴向变形的关系

    Figure  12.   The relationship between the lateral deflection and the axial deformation of the steel rod under compression

    图  13   试件的颈缩破坏情况

    Figure  13.   Neck failure of the specimens

    图  14   钢拉杆在往复拉压下的滞回特性

    Figure  14.   Hysteresis characteristics of steel tie rod under cyclic tension and compression

    表  1   钢拉杆试件规格

    Table  1   Specifications of the steel tie rod specimens

    直径d/mm长度l/mm长细比λ材质数量
    252400384.635CrMo5
    302400320.435CrMo5
    注:钢拉杆长度l为两个销轴中心之间的间距。
    下载: 导出CSV

    表  2   钢材化学成分

    Table  2   Chemical composition of the steel

    拉杆直径
    d/mm
    C/
    (%)
    Si/
    (%)
    Mn/
    (%)
    P/
    (%)
    S/
    (%)
    Cr/
    (%)
    Ni/
    (%)
    Cu/
    (%)
    Mo/
    (%)
    Als/
    (%)
    Al/
    (%)
    250.370.220.580.0210.0070.930.0140.0130.0180.0170.019
    300.380.230.590.0100.0020.920.0350.0400.0860.0170.019
    下载: 导出CSV

    表  3   钢材机械性能

    Table  3   Mechanical properties of the steel

    拉杆直径d/mmRp0.2/MPaRm/MPaA/(%)Z/(%)AkU/J
    2585895620.064.0121.94
    3085895420.065.0121.36
    注:Rp0.2为0.2%残余变形相应的屈服强度;Rm为抗拉强度;AZ分别破断伸长率和截面收缩率;AkU为−20 ℃的冲击功。
    下载: 导出CSV

    表  4   钢拉杆构件编号

    Table  4   Steel tie rod member number

    构件编号直径d/mm加载方式
    MON-D25-1、225单向受拉
    CYC-D25-1~325往复拉压
    MON-D30-1、230单向受拉
    CYC-D30-1~330往复拉压
    下载: 导出CSV

    表  5   钢拉杆单调受拉试验结果

    Table  5   Experimental results of steel tie rods under monotonic tension

    试件编号Fy/kNΔy/mmFm/kNΔm/mmFu/kNΔu/mmFc/kNΔc/mmμδ/(%)
    MON-D25-1423.4012.33463.7874.25463.7874.25309.2482.266.024.18
    MON-D25-2421.3614.96467.6175.00467.6175.00303.8585.265.013.41
    MON-D30-1621.3312.71700.27102.82700.27102.82444.03113.048.095.05
    MON-D30-2597.5914.01673.22125.60673.22125.60443.14134.048.976.03
    注:FyFmFuFc分别为屈服承载力、最大承载力、极限承载力和断裂承载力;ΔyΔmΔuΔc分别为与屈服承载力、最大承载力、极限承载力和断裂承载力相对应的位移;μ为延性系数,μ=Δu/Δyδ为断后伸长率,δ=(lcl0)/l0×100%,其中l0lc分别为杆体的初始长度与破断后的长度。
    下载: 导出CSV

    表  6   钢拉杆单调受拉破坏情况

    Table  6   Failure of steel tie rods under monotonic tension

    试件编号照片颈缩部位破断位置
    MON-D25-1加载端距加载端U型接头463 mm
    MON-D25-2固定端距固定端U型接头456 mm
    MON-D30-1加载端距加载端U型接头315 mm
    MON-D30-2中间段距加载端U型接头1015 mm
    注:左侧(S侧)为加载端,右侧(N侧)为固定端;钢拉杆试件破断位置均为颈缩部位。
    下载: 导出CSV

    表  7   钢拉杆往复拉压试验结果

    Table  7   Experimental results of steel tie rods under cyclic tension and compression

    试件编号Fy/kNΔy/mmFm/kNΔm/mmFu/kNΔu/mmFc/kNΔc/mmμδ/(%)
    CYC-D25-1404.0110.88462.3780.76462.2689.59303.2996.977.424.54
    CYC-D25-2418.6012.42464.8573.10464.8488.20317.4994.845.894.34
    CYC-D25-3403.1310.91460.8965.04427.5089.93297.5194.305.964.03
    CYC-D30-1584.2214.49664.5777.75642.25141.83442.67150.375.376.64
    CYC-D30-2568.0111.64662.2490.00654.79128.33431.08138.747.736.23
    CYC-D30-3571.1611.45656.4789.06639.47145.16433.10154.827.786.75
    注:FyFmFuFc分别为屈服承载力、最大承载力、极限承载力和断裂承载力;ΔyΔmΔuΔc分别为与屈服承载力、最大承载力、极限承载力和断裂承载力相对应的位移;μ为延性系数,μ=Δu/Δyδ为断后伸长率,δ=(lcl0)/l0×100%。
    下载: 导出CSV

    表  8   钢拉杆往复拉压破坏情况

    Table  8   Failure of steel tie rods under cyclic tension and compression

    试件编号照片颈缩部位起始时点破断时点破断位置
    CYC-D25-1加载端9Δy1+10Δy1+距加载端U型接头468 mm
    CYC-D25-2加载端9Δy1+11Δy1+距加载端U型接头473 mm
    CYC-D25-3固定端9Δy1+11Δy1+距固定端U型接头448 mm
    CYC-D30-1中间段13Δy1+15Δy1+距加载端U型接头1248 mm
    CYC-D30-2加载端13Δy1+15Δy1+距加载端U型接头295 mm
    CYC-D30-3中间段13Δy1+15Δy1+距固定端U型接头1258 mm
    注:左侧(S侧)为加载端,右侧(N侧)为固定端;钢拉杆试件破断位置均为颈缩部位。
    下载: 导出CSV

    表  9   钢拉杆屈曲临界荷载

    Table  9   Critical buckling loads of the steel tie rods

    直径Ncr/kN(总长)Ncr1/kN(杆长)Nexp/kN
    D256.7510.3517.66
    D3014.0021.3826.99
    注:E=2.06×105 MPa;l=2400 mm,ld25=1937.6 mm,ld30=1941.8 mm。
    下载: 导出CSV

    表  10   试件钢材的硬化系数

    Table  10   Steel hardening coefficients of the specimens

    试件编号硬化系数k试件编号硬化系数k
    MON-D25-10.0132MON-D30-10.0146
    MON-D25-20.0129MON-D30-20.0149
    CYC-D25-10.0165CYC-D30-10.0145
    CYC-D25-20.0192CYC-D30-20.0157
    CYC-D25-30.0139CYC-D30-30.0152
    平均值0.0151平均值0.0150
    下载: 导出CSV
  • [1] GB 50017−2017, 钢结构设计标准 [S]. 北京: 中国建筑工业出版社, 2017.

    GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)

    [2] JGJ 257−2012, 索结构技术规程 [S]. 北京: 中国建筑工业出版社, 2012.

    JGJ 257−2012, Technical specification for cable structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

    [3] GB/T 20934−2016, 钢拉杆 [S]. 北京: 中国标准出版社, 2017.

    GB/T 20934−2016, Steel tie rod [S]. Beijing: Standards Press of China, 2017. (in Chinese)

    [4] 陆赐麟, 葛亚非. 预应力钢拉杆的理论分析及试验研究[J]. 土木工程学报, 1992, 25(1): 1 − 11.

    LU Cilin, GE Yafei. Theoretical analysis and experimental invistigation of prestressed steel tension members [J]. China Civil Engineering Journal, 1992, 25(1): 1 − 11. (in Chinese)

    [5] 杨建国, 叶建国, 祁海珅, 等. 高强度建筑钢拉杆的应用与研究[J]. 钢结构, 2005, 20(5): 26 − 28. doi: 10.3969/j.issn.1007-9963.2005.05.009

    YANG Jianguo, YE Jianguo, QI Haishen, et al. Technical application and investigation of the high strength constructional steel tie rod [J]. Steel Construction, 2005, 20(5): 26 − 28. (in Chinese) doi: 10.3969/j.issn.1007-9963.2005.05.009

    [6] 祁海珅. 工程用高强度钢拉杆的研制与应用[J]. 工业建筑, 2005, 35(增刊 1): 359 − 361.

    QI Haishen. The manufacture and application of high strength steel tie rod for engineering [J]. Industrial Construction, 2005, 35(Suppl 1): 359 − 361. (in Chinese)

    [7] 王元清, 黄洋, 张勇, 等. 高强墩头式预应力钢拉杆承载能力试验研究[J]. 四川建筑科学研究, 2014, 40(3): 215 − 217, 223. doi: 10.3969/j.issn.1008-1933.2014.03.057

    WANG Yuanqing, HUANG Yang, ZHANG Yong, et al. Experimental study on bearing capacity of high-strength pier head-type prestressed steel tie rods [J]. Sichuan Building Science, 2014, 40(3): 215 − 217, 223. (in Chinese) doi: 10.3969/j.issn.1008-1933.2014.03.057

    [8]

    DUAN W, JOSHI S. Failure analysis of threaded connections in large-scale steel tie rods [J]. Engineering Failure Analysis, 2011, 18(8): 2008 − 2018.

    [9]

    CHEN Z H, LU J, LIU H B, et al. Experimental study on the post-fire mechanical properties of high-strength steel tie rods [J]. Journal of Constructional Steel Research, 2016, 121: 311 − 329.

    [10] 尚德广, 姚卫星. 单轴非线性连续疲劳损伤累积模型的研究[J]. 航空学报, 1998, 19(6): 647 − 656. doi: 10.3321/j.issn:1000-6893.1998.06.002

    SHANG Deguang, YAO Weixing. Study on nonlinear continuous damage cumulative model for uniaxial fatigue [J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(6): 647 − 656. (in Chinese) doi: 10.3321/j.issn:1000-6893.1998.06.002

    [11] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3): 293 − 300.

    SHI Yongjiu, WANG Meng, WANG Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading [J]. Journal of Building Materials, 2012, 15(3): 293 − 300. (in Chinese)

    [12] 王元清, 柳晓晨, 戴国欣, 等. 循环荷载作用下SN490B钢材本构关系试验研究[J]. 建筑结构学报, 2014, 35(4): 142 − 148.

    WANG Yuanqing, LIU Xiaochen, DAI Guoxin, et al. Experimental study on constitutive relation of steel SN490B under cyclic loading [J]. Journal of Building Structures, 2014, 35(4): 142 − 148. (in Chinese)

    [13] 黄世鸿, 刘贵龙, 谭积钻, 等. Q235结构钢的低周疲劳累积损伤研究[J]. 广西大学学报(自然科学版), 2018, 43(1): 31 − 40. doi: 10.13624/j.cnki.issn.1001-7445.2018.0031

    HUANG Shihong, LIU Guilong, TAN Jizuan, et al. On cumulative damage of Q235 steel under low cycle fatigue [J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(1): 31 − 40. (in Chinese) doi: 10.13624/j.cnki.issn.1001-7445.2018.0031

    [14] 唐站站, 陈令坤, 郭悬, 等. 钢材的低周疲劳特性及双曲面本构模型的改进[J]. 哈尔滨工业大学学报, 2018, 50(9): 76 − 82. doi: 10.11918/j.issn.0367-6234.201707026

    TANG Zhanzhan, CHEN Lingkun, GUO Xuan, et al. Low-cycle fatigue behaviors of structural steel and modification of the two-surface constitutive model [J]. Journal of Harbin Institute of Technology, 2018, 50(9): 76 − 82. (in Chinese) doi: 10.11918/j.issn.0367-6234.201707026

    [15] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36 − 46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0192

  • 期刊类型引用(1)

    1. 王宏亮,魏海涛,贾鋆,李晶,马志刚. 基于实测数据的液压机预应力拉杆刚度分析. 锻压技术. 2024(08): 161-166 . 百度学术

    其他类型引用(0)

图(15)  /  表(10)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  59
  • PDF下载量:  51
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2023-02-07
  • 网络出版日期:  2023-03-03
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回