OPTIMIZATION OF MAINTENANCE STRATEGY FOR CORRODED REINFORCED CONCRETE COLUMNS UPON GAMMA PROCESS
-
摘要: 随着在役钢筋混凝土结构的不断退化,业主们迫切关心如何利用有限资金在恰当时候对量大面广的结构进行管理与维护。基于gamma随机过程,该文提出了一种适用于锈蚀钢筋混凝土柱的维护策略优化方法。通过分析锈蚀引起的混凝土柱退化情况,该文建立了适用于不同锈蚀程度与受力状态的混凝土柱残余承载力计算模型。同时,考虑到结构退化过程的不确定性,采用gamma过程对锈蚀柱的失效概率进行了预测,并通过平衡失效风险与维修成本的方法,确定了结构的最佳维护时间。通过一个数值算例验证了该文提出方法的可靠性和有效性。结果显示:损伤程度与受力状态对锈蚀柱残余承载力有较大影响;此外,锈蚀柱的允许退化极限越小,结构的最佳维护时间越早,对应的期望相对成本越高。Abstract: With the continuous degradation of in-service reinforced concrete (RC) structures, owners are urgently concerned about managing and maintaining a sea of RC members at the proper time with limited funds. Thusly, an optimized approach for the maintenance strategy of corrosion-damaged RC columns is presented upon the gamma process. By analyzing the performance deterioration of the corroded RC columns, proposed are the calculation models for estimating the residual bearing capacity under different damaged levels and various loading conditions. Meanwhile, the gamma process is adopted here to predict the failure probability of corroded columns by considering the uncertainty of structural deterioration. Moreover, the optimal maintenance time of the structure is determined by balancing the maintenance cost and the risk of structural failure. A numerical example is given to demonstrate the effectiveness of the models proposed. The results show that: the residual bearing capacity of RC columns can be significantly affected by the rebar corrosion level and load condition; when the allowable degradation limit of the corroded structure is smaller, the optimal maintenance time of the structure is advanced, and the corresponding expected relative cost increases.
-
-
-
[1] BIONDINI F, FRANGOPOL D M. Life-cycle performance of deteriorating structural systems under uncertainty: Review [J]. Journal of Structural Engineering, 2016, 142(9): 4016001. doi: 10.1061/(ASCE)ST.1943-541X.0001544
[2] 袁阳光, 韩万水, 李光玲, 等. 考虑非平稳因素的混凝土桥梁概率极限状态评估[J]. 工程力学, 2020, 37(8): 167 − 178. doi: 10.6052/j.issn.1000-4750.2019.09.0561 YUAN Yangguang, HAN Wanshui, LI Guangling, et al. Probabilistic limit state assessment of concrete bridges considering non-stationary factors [J]. Engineering Mechanics, 2020, 37(8): 167 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0561
[3] YANG W, BAJI H, LI C Q. A theoretical framework for risk-cost-optimized maintenance strategy for structures [J]. International Journal of Civil Engineering, 2020, 18(3): 261 − 278. doi: 10.1007/s40999-019-00470-x
[4] 邵旭东, 彭建新, 晏班夫. 基于结构可靠度的劣化桥梁维护方案成本优化研究[J]. 工程力学, 2008, 25(9): 149 − 155, 197. SHAO Xudong, PENG Jianxin, YAN Banfu. Structural reliability-based life-cycle cost optimization of maintenance interventions for deteriorating bridges [J]. Engineering Mechanics, 2008, 25(9): 149 − 155, 197. (in Chinese)
[5] VAN NOORTWIJK J M. A survey of the application of gamma processes in maintenance [J]. Reliability Engineering & System Safety, 2009, 94(1): 2 − 21.
[6] CHEN H P, ALANI A M. Optimised repair strategy for cracking concrete structures caused by reinforcement corrosion [J]. ACI Structural Journal, 2013, 110(2): 229 − 238.
[7] NEPAL J, CHEN H P. Risk-based optimum repair planning of corroded reinforced concrete structures [J]. Structural Monitoring and Maintenance, 2015, 2(2): 133 − 143. doi: 10.12989/smm.2015.2.2.133
[8] 黄天立, 周浩, 任伟新, 等. 基于伽马过程的钢桥构件疲劳裂纹检测维护策略优化[J]. 中国公路学报, 2016, 29(5): 50 − 57. doi: 10.3969/j.issn.1001-7372.2016.05.007 HUANG Tianli, ZHOU Hao, REN Weixin, et al. Optimal inspection and maintenance strategy for fatigue cracks of steel bridge members using gamma process model [J]. China Journal of Highway and Transport, 2016, 29(5): 50 − 57. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.05.007
[9] DU Y G, CHAN A H C, CLARK L A. Finite element analysis of the effects of radial expansion of corroded reinforcement [J]. Computers & Structures, 2006, 84(13/14): 917 − 929.
[10] CHEN H P, JIANG Y, MARKOU G. Structural performance deterioration of corroding reinforced concrete columns in marine environments [J]. Ocean Engineering, 2022, 262: 112155. doi: 10.1016/j.oceaneng.2022.112155
[11] 惠云玲, 李荣, 林志伸, 等. 混凝土基本构件钢筋锈蚀前后性能试验研究[J]. 工业建筑, 1997, 27(6): 14 − 18, 57. doi: 10.3321/j.issn:1000-8993.1997.06.004 HUI Yunling, LI Rong, LIN Zhishen, et al. Experimental studies on the property before and after corrosion of rebars in basic concrete members [J]. Industrial Construction, 1997, 27(6): 14 − 18, 57. (in Chinese) doi: 10.3321/j.issn:1000-8993.1997.06.004
[12] CAIRNS J, DU Y, LAW D. Residual bond strength of corroded plain round bars [J]. Magazine of Concrete Research, 2006, 58(4): 221 − 231. doi: 10.1680/macr.2006.58.4.221
[13] 高向华, 王小惠, 王建涛. 局部区段锈蚀的钢筋混凝土柱承载力研究[J]. 混凝土与水泥制品, 2011, 9(9): 49 − 55. doi: 10.3969/j.issn.1000-4637.2011.09.014 GAO Xianghua, WANG Xiaohui, WANG Jiantao. Study on load capacity of reinforced concrete column with partial length corrosion [J]. China Concrete and Cement Products, 2011, 9(9): 49 − 55. (in Chinese) doi: 10.3969/j.issn.1000-4637.2011.09.014
[14] HO J C M, KWAN A K H, PAM H J. Minimum flexural ductility design of high-strength concrete beams [J]. Magazine of Concrete Research, 2004, 56(1): 13 − 22. doi: 10.1680/macr.2004.56.1.13
[15] 蒋凤昌, 朱慈勉. 混凝土柱中箍筋锈蚀影响纵筋压屈行为分析[J]. 东南大学学报(自然科学版), 2008, 38(2): 279 − 282. doi: 10.3321/j.issn:1001-0505.2008.02.019 JIANG Fengchang, ZHU Cimian. Analysis of buckling behavior of longitudinal bars affected by stirrup corrosion in concrete columns [J]. Journal of Southeast University (Natural Science Edition), 2008, 38(2): 279 − 282. (in Chinese) doi: 10.3321/j.issn:1001-0505.2008.02.019
[16] 雷国强. 锈蚀钢筋混凝土偏心受压柱承载力试验研究[D]. 长沙: 湖南大学, 2007: 29 − 47. LEI Guoqiang. Experimental research on the carrying capacity of corroded R. C. columns [D]. Changsha: Hunan University, 2007: 29 − 47. (in Chinese)
[17] ALONSO C, ANDRADE C, RODRIGUEZ J, et al. Factors controlling cracking of concrete affected by reinforcement corrosion [J]. Materials and Structures, 1998, 31(7): 435 − 441. doi: 10.1007/BF02480466
[18] BANBA S, ABE T, NAGAOKA K, et al. Evaluation method for bond-splitting behavior of reinforced concrete with corrosion based on confinement stress of concrete against corrosion expansion [J]. Journal of Advanced Concrete Technology, 2014, 12(1): 7 − 23. doi: 10.3151/jact.12.7
[19] CORONELLI D, HANJARI K Z, LUNDGREN K. Severely corroded RC with cover cracking [J]. Journal of Structural Engineering, 2013, 139(2): 221 − 232. doi: 10.1061/(ASCE)ST.1943-541X.0000633
[20] KHAN I, FRANÇOIS R, CASTEL A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams [J]. Cement and Concrete Research, 2014, 56: 84 − 96. doi: 10.1016/j.cemconres.2013.11.006
[21] VIDAL T, CASTEL A, FRANÇOIS R. Analyzing crack width to predict corrosion in reinforced concrete [J]. Cement and Concrete Research, 2004, 34(1): 165 − 174. doi: 10.1016/S0008-8846(03)00246-1
-
期刊类型引用(3)
1. 郭玉荣,姚思盈. 震损钢筋混凝土柱的残余抗震性能试验研究. 湖南大学学报(自然科学版). 2022(09): 1-8 . 百度学术
2. 房辰泽,郭乃胜,孙雅珍,王金昌. 基于劲度模量分析的橡胶沥青混合料疲劳寿命研究. 工程力学. 2020(04): 196-204 . 本站查看
3. 李磊,罗光喜,王卓涵,郑山锁. 震损钢筋混凝土柱剩余能力的数值模型. 工程力学. 2020(12): 52-67 . 本站查看
其他类型引用(2)