INTEGRATED SHAPE OPTIMIZATION AND EXPERIMENTAL STUDY ON PREFABRICATED REPLACEABLE GRADED-YIELDING ENERGY-DISSIPATION CONNECTORS
-
摘要:
为增强装配式混凝土框架结构的可恢复性,提出一种可更换分级屈服耗能连接,通过在梁-柱节点处设置该连接可实现对结构屈服过程的有效控制。针对分级屈服耗能连接中的弯剪部件,基于等效应力屈服强度理论推导得到弯剪部件考虑等应力屈服的形状曲线,通过Python集成Abaqus数值模型和优化算法获得低周疲劳性能最优的形状曲线。对5个分级屈服耗能连接试件开展低周往复加载试验,研究其滞回性能和变形能力等抗震性能,评价形状优化后分级屈服耗能连接的性能水平,并对弯剪部件影响参数进行分析。结果表明:优化后弯剪部件的塑性应变分布更加均匀,耗能能力和材料利用率明显提高;同时弯剪部件经优化后的分级屈服耗能连接试件变形能力显著增强;随着弯剪部件的等应力屈服高度比或高宽比减小,分级屈服耗能连接的承载能力和耗能能力均逐渐提高,但刚度退化速率逐渐加快;各试件变形及损伤主要集中在弯剪部件和屈曲部件,且均实现了分级屈服的耗能机制,说明分级屈服耗能连接能够有效控制结构的屈服过程。
Abstract:A replaceable graded-yielding energy-dissipation connector (RGEC) is proposed to improve the resilience of prefabricated concrete frame structures. The yield process of the structure can be controlled efficiently by installing the RGEC at the beam-column joints. Based on the equivalent stress yield strength theory, the shape curve considering the yield stress contour is derived for the bending-shear components of RGEC. Then the shape curve with the best low cycle fatigue performance is obtained by integrating the Abaqus finite element model and optimization algorithm in Python. Low cyclic loading tests were performed on 5 RGEC specimens to investigate the seismic properties. The performance of RGEC with shape optimized bending-shear components is evaluated, and the influence parameters of the bending-shear component were analyzed. The results show that: the plastic strain distribution of the optimized bending-shear component is more uniform, and the energy dissipation capacity and material utilization are increased significantly. Meanwhile, the deformation capacity of the RGEC with the optimized bending-shear component obviously enhanced. By reducing the yield stress contour height ratio or height-width ratio of the bending-shear component, the bearing capacity and energy dissipation capacity of the RGEC can be improved, while the stiffness degradation rate is accelerated. The deformation and damage of specimens are mainly concentrated in bending-shear components and in the components of buckling possibility, and the energy dissipation mechanism with graded yield is realized, demonstrating that the yield process of structures can be controlled effectively by the RGEC.
-
-
表 1 数值模型材料参数
Table 1 Material parameters in numerical model
Q∞/MPa biso C 1/MPa γ1 C 2/MPa γ2 C 3/MPa γ3 ˉuf/mm 20 1.2 130 000 2500 8000 100 500 0 15 注:Q∞为屈服面最大变化值;biso为屈服面随着塑性应变的增加而变化的比率;γk定义了背应力的变化率;比率Ck/γk是背应力的最大变化值;ˉuf为钢材拉伸时的极限破坏位移。 表 2 弯剪部件优化前后单位体积塑性耗能比较
Table 2 Comparison of energy dissipation per unit volume before and after optimization
位移角θsb ζb/(mJ/mm3) ζa/(mJ/mm3) ζa/ζb/(%) 1/500 0.01 0.00 0.00 1/300 0.15 0.10 63.11 1/100 2.40 2.32 96.78 1/50 9.12 9.32 102.19 1/20 30.14 31.81 105.53 1/10 77.51 83.18 107.32 注:ζb、ζa分别为优化前、后弯剪部件单位体积塑性耗能。 表 3 材料单调拉伸特性试验结果
Table 3 Test results of material monotonic tensile properties
编号 弹性模量
Es/MPa屈服强度
fy/MPa极限强度
fu/MPa屈强比
fy/fu/(%)伸长率
μ/(%)1 192400 256.48 445.63 57.55 39.4 2 198300 263.72 451.32 58.43 40.7 3 195800 259.46 449.78 57.68 39.8 平均值 195500 259.89 448.91 57.89 40.1 表 4 试件的设计参数
Table 4 Parameters of test specimens
试件编号 α h/b/(mm/mm) t/mm B/mm 弯剪段优化情况 RGEC-1 0.614 50.02/30.05 5.94 50.08 优化 RGEC-2 0.400 50.07/29.98 6.03 49.95 未优化 RGEC-3 0.700 49.96/30.01 5.92 50.04 未优化 RGEC-4 0.664 50.03/24.96 5.97 49.97 优化 RGEC-5 0.563 49.93/34.98 6.06 49.91 优化 注:α、h/b分别为弯剪部件等应力屈服高度比和高宽比;t为芯板厚度;B为屈曲段总宽度。 表 5 试件主要试验结果
Table 5 Main test results of specimens
试件编号 加载方向 Py/kN Δy/mm Pmax/kN Δu/mm μ ηmax RGEC-1 正向 96.15 0.68 278.40 13.37 19.66 1.11 负向 95.29 0.65 257.01 12.81 19.71 RGEC-2 正向 103.57 0.63 290.28 12.01 19.06 1.08 负向 103.42 0.61 262.08 11.10 18.20 RGEC-3 正向 82.79 0.58 249.33 10.02 17.28 1.06 负向 82.26 0.57 236.84 9.56 16.77 RGEC-4 正向 67.04 0.75 236.64 12.01 16.01 1.10 负向 66.54 0.73 218.46 12.02 16.47 RGEC-5 正向 128.29 0.62 327.12 13.32 21.48 1.12 负向 127.57 0.61 301.98 12.56 20.59 注:Py为屈服荷载;Δy为屈服位移;Pmax为峰值荷载;Δu为极限位移;μ为位移延性系数;ηmax为各级循环中最大拉压不平衡系数。 -
[1] PRIESTLEY M J N. Overview of PRESSS research program [J]. PCI Journal, 1991, 36(4): 50 − 57. doi: 10.15554/pcij.07011991.50.57
[2] 王俊, 赵基达, 胡宗羽. 我国建筑工业化发展现状与思考[J]. 土木工程学报, 2016, 49(5): 1 − 8. doi: 10.15951/j.tmgcxb.2016.05.001 WANG Jun, ZHAO Jida, HU Zongyu. Review and thinking on development of building industrialization in China [J]. China Civil Engineering Journal, 2016, 49(5): 1 − 8. (in Chinese) doi: 10.15951/j.tmgcxb.2016.05.001
[3] 吴刚, 冯德成. 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39(2): 1 − 16. doi: 10.14006/j.jzjgxb.2018.02.001 WU Gang, FENG Decheng. Research progress on fundamental performance of precast concrete frame beam-to-column connections [J]. Journal of Building Structures, 2018, 39(2): 1 − 16. (in Chinese) doi: 10.14006/j.jzjgxb.2018.02.001
[4] NAKAKI S D, ENGLEKIRK R E, PLAEHN J L. Ductile connectors for a precast concrete frame [J]. PCI Journal, 1994, 39(5): 46 − 59. doi: 10.15554/pcij.09011994.46.59
[5] 李向民, 高润东, 许清风. 预制装配式混凝土框架高效延性节点试验研究[J]. 中南大学学报(自然科学版), 2013, 44(8): 3453 − 3463. LI Xiangmin, GAO Rundong, XU Qingfeng. Experimental study on high ductile joints for precast RC frame [J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3453 − 3463. (in Chinese)
[6] 李虎, 杜永峰, 李芳玉. 装配式混凝土梁柱节点抗震性能试验研究及参数分析[J]. 建筑结构学报, 2021, 42(增刊 1): 88 − 97. doi: 10.14006/j.jzjgxb.2021.S1.0011 LI Hu, DU Yongfeng, LI Fangyu. Experimental study and influential parameters analysis on seismic behavior of prefabricated concrete beam-column joints [J]. Journal of Building Structures, 2021, 42(Suppl 1): 88 − 97. (in Chinese) doi: 10.14006/j.jzjgxb.2021.S1.0011
[7] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09 ZHOU Ying, WU HAO, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
[8] ZHANG H, SU M Z, LIAN M, et al. Experimental and numerical study on the seismic behavior of high-strength steel framed-tube structures with end-plate-connected replaceable shear links [J]. Engineering Structures, 2020, 223: 111172. doi: 10.1016/j.engstruct.2020.111172
[9] 门进杰, 霍文武, 兰涛, 等. 基于刚度和位移带可更换构件RCS混合框架结构抗震设计方法[J]. 工程力学, 2021, 38(4): 169 − 178. doi: 10.6052/j.issn.1000-4750.2020.06.0370 MEN Jinjie, HUO Wenwu, LAN Tao, et al. Seismic design method of RCS hybrid frame structure with replaceable members based on stiffness and displacement [J]. Engineering Mechanics, 2021, 38(4): 169 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0370
[10] LI Z H, QI Y H, TENG J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading [J]. Engineering Structures, 2020, 209: 110217. doi: 10.1016/j.engstruct.2020.110217
[11] 谢鲁齐, 吴京, 章锦洋, 等. 可更换耗能连接力学机理及变形性能研究[J]. 工程力学, 2020, 37(6): 186 − 195. doi: 10.6052/j.issn.1000-4750.2019.08.0475 XIE Luqi, WU Jing, ZHANG Jinyang, et al. Study on the mechanical and deformation properties of replaceable energy dissipation connectors [J]. Engineering Mechanics, 2020, 37(6): 186 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0475
[12] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021, 38(8): 42 − 54. doi: 10.6052/j.issn.1000-4750.2020.07.0531 YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipating prefabricated hinges [J]. Engineering Mechanics, 2021, 38(8): 42 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0531
[13] WANG C L, LIU Y, ZHENG X L, et al. Experimental investigation of a precast concrete connection with all-steel bamboo-shaped energy dissipaters [J]. Engineering Structures, 2019, 178: 298 − 308. doi: 10.1016/j.engstruct.2018.10.046
[14] 朱云青, 吴京, 童超, 等. 带可更换耗能钢棒的装配式混凝土单侧屈服梁柱节点抗震性能试验研究[J]. 工程力学, 2022, 39(7): 205 − 216, 256. doi: 10.6052/j.issn.1000-4750.2021.04.0280 ZHU Yunqing, WU Jing, TONG Chao, et al. Experimental study on hysteretic performance of single-side yielding precast concrete beam-column connection with replaceable energy dissipation bars [J]. Engineering Mechanics, 2022, 39(7): 205 − 216, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0280
[15] HOVEIDAE N, TREMBLAY R, RAFEZY B, et al. Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces [J]. Journal of Constructional Steel Research, 2015, 114: 89 − 99. doi: 10.1016/j.jcsr.2015.06.005
[16] TAKEUCHI T, CHEN X, MATSUI R. Seismic performance of controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2015, 114: 51 − 65. doi: 10.1016/j.jcsr.2015.07.002
[17] BLEBO F C. Damage-free seismic-resistant self-centering friction-damped braced frames with buckling-restrained columns [D]. Akron, Ohio: The University of Akron, 2015.
[18] ZHANG C F, ZHANG Z S, SHI J F. Development of high deformation capacity low yield strength steel shear panel damper [J]. Journal of Constructional Steel Research, 2012, 75: 116 − 130. doi: 10.1016/j.jcsr.2012.03.014
[19] LIU Y, SHIMODA M. Shape optimization of shear panel damper for improving the deformation ability under cyclic loading [J]. Structural and Multidisciplinary Optimization, 2013, 48(2): 427 − 435. doi: 10.1007/s00158-013-0909-6
[20] DENG K L, PAN P, SUN J B, et al. Shape optimization design of steel shear panel dampers [J]. Journal of Constructional Steel Research, 2014, 99: 187 − 193. doi: 10.1016/j.jcsr.2014.03.001
[21] ZHU B J, WANG T, ZHANG L X. Quasi-static test of assembled steel shear panel dampers with optimized shapes [J]. Engineering Structures, 2018, 172: 346 − 357. doi: 10.1016/j.engstruct.2018.06.004
[22] 崔双双, 吕大刚. 钢筋混凝土框架结构整体超强系数需求分析[J]. 地震工程与工程振动, 2015, 35(6): 1 − 7. doi: 10.13197/j.eeev.2015.06.1.cuiss.001 CUI Shuangshuang, LYU Dagang. Demand analysis for structural overstrength factor of reinforced concrete frames [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(6): 1 − 7. (in Chinese) doi: 10.13197/j.eeev.2015.06.1.cuiss.001
[23] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3): 293 − 300. doi: 10.3969/j.issn.1007-9629.2012.03.001 SHI Yongjiu, WANG Meng, WANG Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading [J]. Journal of Building Materials, 2012, 15(3): 293 − 300. (in Chinese) doi: 10.3969/j.issn.1007-9629.2012.03.001
[24] 周天华, 李文超, 管宇, 等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学, 2014, 31(7): 146 − 155. doi: 10.6052/j.issn.1000-4750.2013.01.0090 ZHOU Tianhua, LI Wenchao, GUAN Yu, et al. Damage analysis of steel frames under cyclic load based on stress triaxiality [J]. Engineering Mechanics, 2014, 31(7): 146 − 155. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0090
[25] JGJ 101−2015, 建筑抗震试验规程[S]. 北京: 中国建筑工业出版社, 2015. JGJ 101−2015, Specification for seismic test of buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[26] ANSI/AISC 341-10, Seismic provisions for structural steel buildings [S]. Chicago, Illinois: American Institute of Steel Construction, 2010.
-
期刊类型引用(3)
1. 张慎,陈州,李霆,熊世树. 基于ABAQUS的木材本构模型及试验验证. 工程力学. 2025(03): 77-89 . 本站查看
2. 陈志华,冯浩,刘佳迪. 轻钢-速生木自攻螺钉连接构件抗拔性能研究. 钢结构(中英文). 2023(09): 1-8 . 百度学术
3. 吴荣宝,宋懿,徐一恺,赵展熠,朱一辛,王志强,杨庆增. 自攻螺钉在竹木混合正交胶合木中抗拔性能研究. 木材科学与技术. 2023(06): 61-67 . 百度学术
其他类型引用(7)