基于知识和数据联合驱动的全灌浆套筒失效模式预测与解释

马高, 覃春雄, 王瑶

马高, 覃春雄, 王瑶. 基于知识和数据联合驱动的全灌浆套筒失效模式预测与解释[J]. 工程力学, 2024, 41(6): 130-144. DOI: 10.6052/j.issn.1000-4750.2022.05.0477
引用本文: 马高, 覃春雄, 王瑶. 基于知识和数据联合驱动的全灌浆套筒失效模式预测与解释[J]. 工程力学, 2024, 41(6): 130-144. DOI: 10.6052/j.issn.1000-4750.2022.05.0477
MA Gao, QIN Chun-xiong, WANG Yao. PREDICTION AND INTERPRETATION OF FAILURE MODES OF GROUTED SLEEVE BY COMBINED KNOWLEDGE-DRIVEN AND DATA-DRIVEN METHODOLOGY[J]. Engineering Mechanics, 2024, 41(6): 130-144. DOI: 10.6052/j.issn.1000-4750.2022.05.0477
Citation: MA Gao, QIN Chun-xiong, WANG Yao. PREDICTION AND INTERPRETATION OF FAILURE MODES OF GROUTED SLEEVE BY COMBINED KNOWLEDGE-DRIVEN AND DATA-DRIVEN METHODOLOGY[J]. Engineering Mechanics, 2024, 41(6): 130-144. DOI: 10.6052/j.issn.1000-4750.2022.05.0477

基于知识和数据联合驱动的全灌浆套筒失效模式预测与解释

基金项目: 国家自然科学基金项目(52278498,51878268);湖南省创新平台与人才计划项目(2021RC3041);湖南省自然科学基金项目(2020JJ4195)
详细信息
    作者简介:

    覃春雄(1997−),男,广西柳州人,硕士生,主要从事装配式结构等研究(E-mail: qinchunxiong@hnu.edu.cn)

    王 瑶(1998−),男,湖南娄底人,硕士生,主要从事装配式结构等研究(E-mail: wangyao@hnu.edu.cn)

    通讯作者:

    马 高(1985−),男,湖南邵阳人,副教授,博士,主要从事结构抗震、装配式结构等研究(E-mail: magao@hnu.edu.cn)

  • 中图分类号: TU756.4;TU311.41

PREDICTION AND INTERPRETATION OF FAILURE MODES OF GROUTED SLEEVE BY COMBINED KNOWLEDGE-DRIVEN AND DATA-DRIVEN METHODOLOGY

  • 摘要:

    为精准预测全灌浆套筒失效模式(钢筋拉断、钢筋拔出),该文提出一种基于知识和数据联合驱动的全灌浆套筒失效模式预测方法。根据348例全灌浆套筒试验数据,通过机器学习回归算法与规范公式分别得到全灌浆套筒灌浆连接承载力预测值与钢筋极限抗拉承载力计算值,并基于领域知识建立两者与失效模式关系的特征参数,将其与试验数据组成新的数据库。基于新的数据库,通过机器学习分类算法对全灌浆套筒失效模式自动预测。研究结果表明,随机森林算法对全灌浆套筒灌浆连接承载力与失效模式均具有最好的预测效果。相比其他全灌浆套筒失效模式预测方法,该文提出的知识和数据联合驱动预测方法更具竞争力,总体分类准确率可达到94.3%。结合Shapley additive explanations (SHAP)方法和Partial dependent plot (PDP)方法对预测结果进行解释,审视各参数对失效模式的影响。SHAP与PDP的解释结果都表明钢筋锚固长度与灌浆料抗压强度是对失效模式影响最大的两个试验参数,其中PDP解释结果还给出两者影响失效模式转化的临界值,分别为6.01 d (d为钢筋直径)、80.87 MPa。

    Abstract:

    In order to accurately predict the failure mode (rebar fracture and rebar pull-out) of grouted sleeves, a method driven by knowledge and data is proposed. Based on the test data of 348 cases of monotonically stretched grouted sleeves, the predicted value for grouting connection bearing capacity of grouted sleeve and the calculated value for ultimate tensile bearing capacity of rebar are obtained through machine learning regression algorithm and code formula respectively. The characteristic parameters of the relationship between them and failure mode are established based on domain knowledge, which is combined with the test data to form a new database. The failure mode is automatically predicted by using the new database and machine learning classification algorithm. The results show that the random forest algorithm has the best prediction effect on the bearing capacity and the failure mode. Compared with other prediction methods of the failure mode, the method driven by knowledge and data is more competitive in this paper. The general classification accuracy can reach 94.3%. The prediction results are interpreted by combining the methods of shapley additive explanations (SHAP) and partial dependent plot (PDP), and the influence of various parameters on failure modes is examined. Both the interpretive results of SHAP and PDP indicate that the anchorage length of rebar and the compressive strength of grouting material are the two test parameters that have the greatest influence on the failure mode. The interpretive results of PDP also give their critical values affecting the transformation of failure modes, which are 6.01d (d is the diameter of rebar) and 80.87 MPa, respectively.

  • 图  1   知识和数据联合驱动方法分析流程

    Figure  1.   Analysis process of combined data-driven and knowledge-driven method

    图  2   套筒灌浆连接承载力预测结果

    Figure  2.   Prediction results of bearing capacity of grouted sleeve connection

    图  3   Pu/Fu频数分布

    Figure  3.   Frequency distribution of Pu/Fu

    图  4   各特征之间的相关系数

    Figure  4.   Correlation coefficients between features

    图  5   知识与数据联合驱动的测试集混淆矩阵

    Figure  5.   Confusion matrices of test set based on combined data-driven and knowledge-driven method

    图  6   使用新数据检验模型的泛化性能

    Figure  6.   Checking generalisation performance for models using new data

    图  7   预测结果的对比

    Figure  7.   Comparison of prediction results

    图  8   不同Pu/Fu值下准确率分布

    Figure  8.   Accuracy distribution under different Pu/Fu values

    图  9   数据驱动的测试集混淆矩阵

    Figure  9.   Confusion matrices of test set based on data driven method

    图  10   SHAP全局解释结果

    Figure  10.   Global interpretation results based on SHAP algorithm

    图  11   典型样本Shapley值分析图

    Figure  11.   Analysis of Shapley value of typical specimens

    图  12   单特征部分依赖图

    Figure  12.   Partial dependent plot of single feature

    13   LdPu/FufcZQ的PDP解释结果验证

    13.   Validation of PDP interpretation results for Ld, Pu/Fu, fc, Z and Q

    表  1   348例全灌浆套筒试验数据

    Table  1   Test data of 348 cases of grouted sleeves

    文献来源L/mmnD/TGZQfc/MPat/mmLd /mmd/mmfu/MPaF/kNM
    [7]195~2151~410.05~12.6700063.0~91.88.0~11.03.50~9.1016~20596.0~618.082~3200(62),1(31)
    [24]268~3964~511.11~12.0000072.79.5~11.07.00~7.5016~25591.0~637.0119~3160(2),1(7)
    [25]380~4805~612.7500080.29.04.00~8.0025585.0226~2610(6)
    [26]280~5703~57.67~11.00000123.810.0~14.58.0014~25725.0~839.0113~4151(14)
    [27]280~4603~57.67~9.670~20~0.4000123.810.0~10.58.0014~25598.0~616.092~3040(2),1(20)
    [28]190~4403~810.8000095.09.53.00~7.0025650.0190~2650(3),1(3)
    [29]190~4403~910.80~12.0000075.0~115.09.5~12.53.00~8.0025608.0181~2640(16),1(17)
    [30]310~4504~511.1400083.912.56.00~8.0022846.0278~3080(9),1(3)
    [31]280~4603~57.67~9.670~20~0.4000123.810.0~10.58.0014~25598.0~616.092~3040(7),1(14)
    [32]37048.6700075.2~125.910.08.0020615.091~3040(3),1(9)
    [33]280312.670~30~0.350088.19.08.5014608.080~920(5),1(2)
    [34]36839.780~10~0.375085.07.58.0020599.0171~1890(1),1(3)
    [35]64068.400~30~0.375089.08.08.0040605.0769~9640(7),1(4)
    [36]330311.1400073.1~83.78.08.0016623.080~1180(5),1(3)
    [37]310~330311.50~12.0000080.012.05.50~8.0016618.0126~1310(4),1(4)
    [38]65077.000~20~0.3000127.011.510.0032621.0460~4810(2),1(2)
    [39]27537.670~30~0.3750.05~0.1474.310.04.00~8.0014582.068~900(7),1(5)
    [40]31048.000~10~0.500030.9~89.810.08.0016655.077~1330(1),1(5)
    [41]370411.8000058.9~73.611.0~17.04.20~6.2019~25593.0130~2880(14),1(1)
    [42]348~46029.58~12.000, 400~0.5088.511.08.0018~25575.0~620.079~2880(9),1(7)
    [43]28047.660, 400.18~0.3085.010.08.0014630.018~970(4),1(1)
    [44]380411.330, 400~0.50122.211.09.2520569.223~1840(12),1(6)
    [45]300112.752, 40~0.3000~0.30128.810.57.0020625.0154~2040(3),1(3)
    注:L为套筒长度;套筒径厚比D/T为套筒外径D与壁厚T之比;套筒肋个数n为套筒长度一半的环肋数量;G为灌浆缺陷类型,其中0为无灌浆缺陷,1为竖向灌浆端部黏结缺陷(简称端部缺陷),2为竖向灌浆中部黏结缺陷(简称中部缺陷),3为竖向灌浆均布黏结缺陷(简称均布缺陷),4为水平灌浆质量缺陷(简称水平缺陷);竖向灌浆黏结缺陷率Z为黏结缺陷长度与钢筋锚固长度之比;水平灌浆质量缺陷率Q为水平灌浆时灌浆料缺失质量与满灌的灌浆料质量之比;fc为灌浆料抗压强度;灌浆料厚度t=(D−2Td)/2;Ld为钢筋锚固长度;d为钢筋直径;fu为钢筋材性试验得到的钢筋极限抗拉强度;F为套筒灌浆连接的钢筋受拉承载力;M为失效模式,其中0代表钢筋拔出,1代表钢筋拉断,括号里数字代表试件数量。
    下载: 导出CSV

    表  2   本文所选择的机器学习算法

    Table  2   The machine learning algorithm selected for this article

    编号算法应用学习器数量参考文献
    1SVM回归、分类单一[48]
    2KNN回归、分类单一[49]
    3DT回归、分类单一[50]
    4RF回归、分类集成[51]
    5XGBoost回归、分类集成[52]
    6LightGBM回归、分类集成[53]
    下载: 导出CSV

    表  3   机器学习回归算法预测结果

    Table  3   Prediction result of machine learning regression algorithm

    算法 决定系数R2 平均绝对值误差MAE
    SVM 0.82 44.03
    KNN 0.97 17.62
    DT 0.98 11.60
    RF 0.99 9.76
    XGBoost 0.98 13.59
    LightGBM 0.87 35.99
    下载: 导出CSV
  • [1]

    EINEA A, YAMANE T, TADROS M K. Grout-filled pipe splices for precast concrete construction [J]. PCI Journal, 1995, 40(1): 82 − 93. doi: 10.15554/pcij.01011995.82.93

    [2]

    DABIRI H, KHEYRODDIN A, DALL'ASTA A. Splice methods used for reinforcement steel bars: A state-of-the-art review [J]. Construction and Building Materials, 2022, 320: 126198. doi: 10.1016/j.conbuildmat.2021.126198

    [3]

    LI X M, XIAO S, GAO R D, et al. Effects of grout sleeve defects and their repair on the seismic performance of precast concrete frame structures [J]. Engineering Structures, 2021, 242: 112619. doi: 10.1016/j.engstruct.2021.112619

    [4] 马军卫, 潘金龙, 尹万云, 等. 灌浆套筒连接全装配式框架-剪力墙结构抗震性能试验研究[J]. 工程力学, 2017, 34(10): 178 − 187. doi: 10.6052/j.issn.1000-4750.2016.06.0475

    MA Junwei, PAN Jinlong, YIN Wanyun, et al. Experimental study on seismic performance of full precast shear wall-frame structures with reinforcement spliced by grout-filled sleeves [J]. Engineering Mechanics, 2017, 34(10): 178 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.06.0475

    [5]

    LI F R, ABRUZZESE D, MILANI G, et al. Influence of internal defects of semi grouted sleeve connections on the seismic performance of precast monolithic concrete columns [J]. Journal of Building Engineering, 2022, 49: 104009. doi: 10.1016/j.jobe.2022.104009

    [6] 吴涛, 刘全威, 成然, 等. 钢筋套筒灌浆连接性能试验研究及筒壁应力分析[J]. 工程力学, 2017, 34(10): 68 − 75. doi: 10.6052/j.issn.1000-4750.2016.05.0357

    WU Tao, LIU Quanwei, CHENG Ran, et al. Experimental study and stress analysis of mechanical performance of grouted sleeve splice [J]. Engineering Mechanics, 2017, 34(10): 68 − 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0357

    [7] 郑永峰. GDPS灌浆套筒钢筋连接技术研究[D]. 南京: 东南大学, 2016.

    ZHENG Yongfeng. Research on rebar splicing system by GDPS grout-filled coupling sleeve [D]. Nanjing: Southeast University, 2016. (in Chinese)

    [8]

    LING J H, RAHMAN A B A, IBRAHIM I S, et al. Tensile capacity of grouted splice sleeves [J]. Engineering Structures, 2016, 111: 285 − 296. doi: 10.1016/j.engstruct.2015.12.023

    [9]

    LU Z W, HUANG J, LI Y B, et al. Mechanical behaviour of grouted sleeve splice under uniaxial tensile loading [J]. Engineering Structures, 2019, 186: 421 − 435. doi: 10.1016/j.engstruct.2019.02.033

    [10] 刘良林, 肖建庄, 丁陶. 套筒灌浆连接受力失效机理与有限元仿真验证[J]. 工程力学, 2022, 39(12): 177 − 189. doi: 10.6052/j.issn.1000-4750.2021.07.0560

    LIU Lianglin, XIAO Jianzhuang, DING Tao. Finite element simulation verification and failure mechanism of grouted sleeve connections under loading [J]. Engineering Mechanics, 2022, 39(12): 177 − 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0560

    [11]

    AHN B I, KIM H K, PARK B M. Confining effect of mortar grouted splice sleeve on reinforcing bar [J]. Journal of the Korea Concrete Institute, 2003, 15(1): 102 − 109. doi: 10.4334/JKCI.2003.15.1.102

    [12]

    KIM H K. Bond strength of mortar-filled steel pipe splices reflecting confining effect [J]. Journal of Asian Architecture and Building Engineering, 2012, 11(1): 125 − 132. doi: 10.3130/jaabe.11.125

    [13]

    XU F, WANG K, WANG S G, et al. Experimental bond behavior of deformed rebars in half-grouted sleeve connections with insufficient grouting defect [J]. Construction and Building Materials, 2018, 185: 264 − 274. doi: 10.1016/j.conbuildmat.2018.07.050

    [14]

    ZHENG G Y, KUANG Z P, XIAO J Z, et al. Mechanical performance for defective and repaired grouted sleeve connections under uniaxial and cyclic loadings [J]. Construction and Building Materials, 2020, 233: 117233. doi: 10.1016/j.conbuildmat.2019.117233

    [15]

    MCCARTHY J, MINSKY M L, ROCHESTER N, et al. A proposal for the Dartmouth summer research project on artificial intelligence, august 31, 1955 [J]. AI Magazine, 2006, 27(4): 12.

    [16]

    MANGALATHU S, JEON J S. Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques [J]. Engineering Structures, 2018, 160: 85 − 94. doi: 10.1016/j.engstruct.2018.01.008

    [17]

    TANG H S, XIE Y J, ZHAO T T, et al. Identification of grout sleeve joint defect in prefabricated structures using deep learning [J]. Frontiers in Materials, 2020, 7: 298. doi: 10.3389/fmats.2020.00298

    [18] 李启明, 喻泽成, 余波, 等. 钢筋混凝土柱地震破坏模式判别的两阶段支持向量机方法[J]. 工程力学, 2022, 39(2): 148 − 158. doi: 10.6052/j.issn.1000-4750.2020.12.0937

    LI Qiming, YU Zecheng, YU Bo, et al. Two-stage support vector machine method for failure mode classification of reinforcedconcrete columns [J]. Engineering Mechanics, 2022, 39(2): 148 − 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0937

    [19]

    DABIRI H, KHEYRODDIN A, FARAMARZI A. Predicting tensile strength of spliced and non-spliced steel bars using machine learning-and regression-based methods [J]. Construction and Building Materials, 2022, 325: 126835. doi: 10.1016/j.conbuildmat.2022.126835

    [20]

    MANGALATHU S, HWANG S H, JEON J S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach [J]. Engineering Structures, 2020, 219: 110927. doi: 10.1016/j.engstruct.2020.110927

    [21] 冯德成, 吴刚. 混凝土结构基本性能的可解释机器学习建模方法[J]. 建筑结构学报, 2022, 43(4): 228 − 238. doi: 10.14006/j.jzjgxb.2020.0491

    FENG Decheng, WU Gang. Interpretable machine learning-based modeling approach for fundamental properties of concrete structures [J]. Journal of Building Structures, 2022, 43(4): 228 − 238. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0491

    [22]

    CHEN S Z, FENG D C, HAN W S, et al. Development of data-driven prediction model for CFRP-steel bond strength by implementing ensemble learning algorithms [J]. Construction and Building Materials, 2021, 303: 124470. doi: 10.1016/j.conbuildmat.2021.124470

    [23] 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学:信息科学, 2020, 50(9): 1281 − 1302. doi: 10.1360/SSI-2020-0204

    ZHANG Bo, ZHU Jun, SU Hang. Toward the third generation of artificial intelligence [J]. Scientia Sinica Informationis, 2020, 50(9): 1281 − 1302. (in Chinese) doi: 10.1360/SSI-2020-0204

    [24] 陈项南. 新型灌浆变形钢套筒连接技术研究[D]. 南京: 东南大学, 2015.

    CHEN Xiangnan. Study on a new-type grouted deformed pipe splice [D]. Nanjing: Southeast University, 2015. (in Chinese)

    [25] 唐林. 单向拉伸荷载下新型套筒灌浆连接长度试验研究[D]. 沈阳: 沈阳建筑大学, 2017.

    TANG Lin. Experimental study on the anchorage length of a new-type grouted pipe splice under incremental tensile load [D]. Shenyang: Shenyang Jianzhu University, 2017. (in Chinese)

    [26] 高润东, 王玉兰, 李向民, 等. 高强钢筋套筒灌浆连接单向拉伸试验研究[J]. 工业建筑, 2017, 47(增刊 1): 200 − 204.

    GAO Rundong, WANG Yulan, LI Xiangmin, et al. Experimental research on uniaxial tension of grout sleeve splicing of high strength rebars [J]. Industrial Architecture, 2017, 47(Suppl 1): 200 − 204. (in Chinese)

    [27] 李向民, 高润东, 许清风, 等. 灌浆缺陷对钢筋套筒灌浆连接接头强度影响的试验研究[J]. 建筑结构, 2018, 48(7): 52 − 56. doi: 10.19701/j.jzjg.2018.07.010

    LI Xiangmin, GAO Rundong, XU Qingfeng, et al. Experimental study on influence of grouting defect on joint strength of grout sleeve splicing of rebars [J]. Building Structure, 2018, 48(7): 52 − 56. (in Chinese) doi: 10.19701/j.jzjg.2018.07.010

    [28] 吴迎昌. 钢筋套筒灌浆连接的受力机理研究[D]. 沈阳: 沈阳建筑大学, 2018.

    WU Yingchang. Study on the force mechanism of the grout-filled pipe splice [D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese)

    [29] 宋玉柱. 钢筋套筒灌浆连接的受力性能研究[D]. 沈阳: 沈阳建筑大学, 2019.

    SONG Yuzhu. Study on the mechanical behavior of steel sleeve grouting connection [D]. Shenyang: Shenyang Jianzhu University, 2019. (in Chinese)

    [30] 张珊珊. 600 MPa级钢筋套筒灌浆连接力学性能研究[D]. 济南: 山东建筑大学, 2021.

    ZHANG Shanshan. Study on the mechanical properties of grouting connection of 600 MPa grade steel reinforcement sleeve [D]. Ji’nan: Shandong Jianzhu University, 2021. (in Chinese)

    [31] 高润东, 李向民, 张富文. 不同位置灌浆缺陷对钢筋套筒灌浆连接接头强度影响的研究[J]. 施工技术, 2019, 48(18): 116 − 119, 124.

    GAO Rundong, LI Xiangmin, ZHANG Fuwen. Study on influences of grouting defects in different positions on joint strength of steel sleeve grouting [J]. Construction Technology, 2019, 48(18): 116 − 119, 124. (in Chinese)

    [32] 高润东, 肖顺, 李向民, 等. 非正常灌浆对钢筋套筒灌浆连接接头受力性能影响的试验研究[J]. 建筑结构, 2021, 51(5): 117 − 121.

    GAO Rundong, XIAO Shun, LI Xiangmin, et al. Experimental study on influence of abnormal grouting on mechanical properties of steel rebar sleeve grouting splicing joint [J]. Building Structure, 2021, 51(5): 117 − 121. (in Chinese)

    [33] 陈铭. 带有灌浆缺陷的全灌浆套筒力学性能研究[D]. 合肥: 安徽建筑大学, 2021.

    CHEN Ming. Study on mechanical properties of full-grouting sleeve with defects [D]. Hefei: Anhui Jianzhu University, 2021. (in Chinese)

    [34] 杨一洲. 考虑灌浆套筒缺陷分布不同的力学性能研究[D]. 桂林: 桂林理工大学, 2021.

    YANG Yizhou. A study of the mechanical properties of grout sleeve considering different defect distributions [D]. Guilin: Guilin University of Technology, 2021. (in Chinese)

    [35] 殷俊. 考虑灌浆缺陷的大直径新型灌浆套筒受拉性能研究[D]. 桂林: 桂林理工大学, 2020.

    YIN Jun. Research on the tensile property of new type grouting sleeve with large diameter considering grouting defect [D]. Guilin: Guilin University of Technology, 2020. (in Chinese)

    [36] 周继宇. 静(动)荷载下钢筋灌浆套筒连接性能研究[D]. 长春: 吉林建筑大学, 2021.

    ZHOU Jiyu. Study on the performance of reinforcement grouting sleeve connection under static and dynamic loads [D]. Changchun: Jilin Jianzhu University, 2021. (in Chinese)

    [37] 张国丰. 多种灌浆套筒受力性能试验对比分析及优化设计[D]. 包头: 内蒙古科技大学, 2020.

    ZHANG Guofeng. Comparative analysis and optimal design of mechanical performance test of various grouting sleeve [D]. Baotou: Inner Mongolia University of Science & Technology, 2020. (in Chinese)

    [38] 郭庆杰. 灌浆套筒及其连接的装配式桥墩静力行为研究[D]. 北京: 北京交通大学, 2020.

    GUO Qingjie. Research on static behavior of grouted sleeve and prefabricated pier [D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)

    [39] 王伟. 考虑套筒灌浆缺陷的装配式剪力墙抗震性能试验研究[D]. 南京: 东南大学, 2019.

    WANG Wei. Experimental study on seismic performance of precast shear wall considering defects in sleeve grouting connection [D]. Nanjing: Southeast University, 2019. (in Chinese)

    [40] 吴宣泽. 套筒灌浆缺陷对装配式混凝土剪力墙结构抗震性能影响研究[D]. 南京: 东南大学, 2019.

    WU Xuanze. Seismic performance research on fabricated concrete shear wall structures with sleeve grouting defects [D]. Nanjing: Southeast University, 2019. (in Chinese)

    [41]

    KIM H K, AHN B I. Bond strength of grout-filled splice sleeve considering effects of confinement [J]. Journal of the Korea Concrete Institute, 2003, 15(4): 615 − 622. doi: 10.4334/JKCI.2003.15.4.615

    [42] 蔡婉霞. 基于灌浆密实度的套筒接头超声检测及承载力评估相关问题研究[D]. 福州: 福州大学, 2017.

    CAI Wanxia. Research on ultrasonic testing and capacity assessment of sleeve connectors based on grouting compactness [D]. Fuzhou: Fuzhou University, 2017. (in Chinese)

    [43] 颜华, 宋波, 徐东升, 等. 套筒水平灌浆缺陷复灌前后对套筒钢筋受拉性能的影响[J]. 科学技术与工程, 2021, 21(14): 5870 − 5876. doi: 10.3969/j.issn.1671-1815.2021.14.032

    YAN Hua, SONG Bo, XU Dongsheng, et al. Influence of sleeve horizontal grouting defects on tensile properties of sleeve reinforcement before and after re-grouting [J]. Science Technology and Engineering, 2021, 21(14): 5870 − 5876. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.14.032

    [44] 杨超. 基于应力波法的套筒灌浆密实度检测及套筒接头受力性能研究[D]. 福州: 福建工程学院, 2020.

    YANG Chao. Grouting compactness detection in sleeves based on stress wave method and research on mechanical behaviors of sleeve connectors [D]. Fuzhou: Fujian University of Technology, 2020. (in Chinese)

    [45] 李玉博. 基于高性能灌浆料研制的新型套筒设计与连接性能研究[D]. 武汉: 武汉理工大学, 2019.

    LI Yubo. Design and study on connection properties of a new type of grouting sleeve based on high-performance grouting material [D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)

    [46] JGJ 355−2015, 钢筋套筒灌浆连接应用技术规程[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ 355−2015, Technical specification for grout sleeve splicing of rebars [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)

    [47] GB/T 228.1−2010, 金属材料 拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011: 9 − 19.

    GB/T 228.1−2010, Metallic materials-tensile testing-part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2011: 9 − 19. (in Chinese)

    [48]

    HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines [J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18 − 28. doi: 10.1109/5254.708428

    [49]

    COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21 − 27. doi: 10.1109/TIT.1967.1053964

    [50]

    SAFAVIAN S R, LANDGREBE D. A survey of decision tree classifier methodology [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3): 660 − 674. doi: 10.1109/21.97458

    [51]

    BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5 − 32. doi: 10.1023/A:1010933404324

    [52]

    CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA: American Computer Society, 2016: 785 − 794.

    [53]

    KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 3149 − 3157.

    [54]

    LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 4768 − 4777.

    [55]

    FRIEDMAN J H. Greedy function approximation: A gradient boosting machine [J]. The Annals of Statistics, 2001, 29(5): 1189 − 1232. doi: 10.1214/aos/1013203450

    [56] 刘也萍. 采用UHPC灌浆料大口径全灌浆套筒接头的性能试验研究[D]. 长沙: 湖南大学, 2019.

    LIU Yeping. Experimental study on performance of large diameter grout-filled splice sleeve joint with UHPC [D]. Changsha: Hunan University, 2019. (in Chinese)

    [57]

    AMELI M J, BROWN D N, PARKS J E, et al. Seismic column-to-footing connections using grouted splice sleeves [J]. ACI Structural Journal, 2016, 113(5): 1021 − 1030.

  • 期刊类型引用(11)

    1. 刘庆宽,韩鹏,孙一飞,褚泽楷,王滨璇,李凯文. 安装肋条斜拉索的涡激振动和气动力特性研究. 湖南大学学报(自然科学版). 2024(07): 95-110 . 百度学术
    2. 马文荣,陈学江,胡超,徐勇. 毕节倒天河斜塔斜拉桥的总体设计. 公路与汽运. 2024(05): 113-118 . 百度学术
    3. 刘建峰,王刚,段世铭,刘士岳,王其昂,刘冠良,周鹏. 考虑非线性的负刚度阻尼器拉索多模态减振优化研究. 自然灾害学报. 2024(06): 162-168 . 百度学术
    4. 孙一飞,刘庆宽,王仰雪,常幸,邵林媛. O型套环对斜拉索涡激振动影响的试验研究. 工程力学. 2023(07): 239-248 . 本站查看
    5. 刘庆宽,邵林媛,孙一飞,常幸,韩鹏,王仰雪. 螺旋线对斜拉索涡激振动特性影响的试验研究. 湖南大学学报(自然科学版). 2023(11): 25-35 . 百度学术
    6. 张为,刘庆宽,刘小兵. 长安街西延永定河大桥斜拉索风雨振及减振措施研究. 世界桥梁. 2020(03): 48-52 . 百度学术
    7. 郑云飞,刘庆宽,战启芳,刘训臣,刘晓庆. 螺旋线参数对斜拉索气动特性影响的试验研究. 工程力学. 2020(S1): 301-306 . 本站查看
    8. 陈学兵. 一种新型斜拉索防水罩制造技术研究. 公路交通技术. 2019(01): 59-63 . 百度学术
    9. 张胤,周颖,龚硕. 基于负刚度支撑的拉索振动控制研究. 交通科技. 2019(02): 9-12 . 百度学术
    10. 刘庆宽,卢照亮,田凯强,胡波,马文勇. 螺旋线对斜拉桥斜拉索高雷诺数风致振动影响的试验研究. 振动与冲击. 2018(14): 175-179 . 百度学术
    11. 刘庆宽,李聪辉,郑云飞,刘小兵,马文勇. 缠绕螺旋线的斜拉桥斜拉索平均气动阻力特性的试验研究. 土木工程学报. 2017(05): 97-104 . 百度学术

    其他类型引用(14)

图(14)  /  表(3)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  97
  • PDF下载量:  105
  • 被引次数: 25
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-09-04
  • 网络出版日期:  2022-09-15
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回