RESEARCH ON SPACE PARTITION GLOBAL SENSITIVITY AND ITS APPLICATION IN WIND TURBINE BLADE UNDER ULTIMATE LOAD
-
摘要:
全局灵敏度分析,旨在考量结构系统中各输入随机变量对输出响应不确定性及风险水平影响的重要度。它能为后续的可靠度评估、故障诊断、系统设计、预测及优化等提供重要参考。尽管各类全局灵敏度分析方法不断涌现,但高维复杂结构(如风机叶片结构)灵敏度分析仍是目前的难题。该文针对空间分割全局灵敏度分析方法的三种可能计算形式及最优分割方案展开研究,通过标准算例分析和误差理论推导,提出能充分利用样本信息、有效减轻计算负担的求解形式及分割方案,并将其应用于风机叶片极限载荷工况下的全局灵敏度分析中,同时为未来设计更为高效、经济和可靠的风机结构提供参考。
Abstract:Estimating the importance measure of a structural system by global sensitivity analysis methods can figure out the importance ranking of the input random variables that affect the uncertainty of the output response and the risk level, which provides a basis for the subsequent research on reliability evaluation, on fault diagnosis and system design, on prediction and optimization. A variety of global sensitivity methods has been developed. However, the global sensitivity analysis on high dimensional and complex structures such as wind turbine blade is still a problem to be solved. Three possible calculation forms of space partition global sensitivity analysis methods and the optimal partition scheme are thusly studied. The optimal calculation form and partition scheme, being able to utilize the information of samples and to reduce computational burden as fully as possible, are presented via the analysis of the standard example and by reasoning of the errors. The method is applied to the global sensitivity analysis of wind turbine blade under the ultimate load condition. The method has demonstrated its significance in improving the efficiency on future design of the wind turbine blade, on saving design cost and improving product quality.
-
Keywords:
- global sensitivity analysis /
- Sobol index /
- space partition /
- error analysis /
- ultimate load
-
-
表 1 叶片随机参数分布特性
Table 1 Deterministic variables of the turbine blade
变量 均值 标准差 分布类型 最大强度σmax/MPa 5.18×102 5.18×101 正态分布 衰减系数x 1.054×10−1 1×10−3 正态分布 梁帽宽度a/m 5×10−1 5×10−3 正态分布 梁帽外边界b1/m 2.28×10−1 4.6×10−3 正态分布 梁帽内边界b2/m 2.17×10−1 4.4×10−4 正态分布 转子半径R/m 2.15×101 2×10−2 正态分布 叶根半径r/m 2×100 3×10−3 正态分布 风速U10 由k、A及uc决定 上截断Weibull分布 -
[1] WEI P F, LYU Z Z, HAO W R, et al. Efficient sampling methods for global reliability sensitivity analysis [J]. Computer Physics Communications, 2012, 183(8): 1728 − 1743. doi: 10.1016/j.cpc.2012.03.014
[2] WEI P F, LU Z Z, YUAN X K. Monte Carlo simulation for moment-independent sensitivity analysis [J]. Reliability Engineering & System Safety, 2013, 110: 60 − 67.
[3] CHEN J B, WAN Z Q, BEER M. A global sensitivity index based on Fréchet derivative and its efficient numerical analysis [J]. Probabilistic Engineering Mechanics, 2020, 62: 103096. doi: 10.1016/j.probengmech.2020.103096
[4] SHANG X B, CHAO T, MA P, et al. Derivative-based global sensitivity measure using radial basis function [J]. Structural and Multidisciplinary Optimization, 2020, 62(1): 107 − 129. doi: 10.1007/s00158-019-02477-3
[5] 吕大刚, 李功博, 宋彦. 基于MLS-SVM的结构整体可靠度与全局灵敏度分析[J]. 工程力学, 2022, 39(增刊 1): 92 − 100. doi: 10.6052/j.issn.1000-4750.2021.05.S015 LYU Dagang, LI Gongbo, SONG Yan. Analysis of global reliability and sensitivity of structures based on MLS-SVM [J]. Engineering Mechanics, 2022, 39(Suppl 1): 92 − 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.S015
[6] SOBOL I M. Sensitivity analysis for non-linear mathematical models [J]. Mathematical Modelling and Computational Experiment, 1993, 1: 407 − 414.
[7] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index [J]. Computer Physics Communications, 2010, 181(2): 259 − 270. doi: 10.1016/j.cpc.2009.09.018
[8] BORGONOVO E. A new uncertainty importance measure [J]. Reliability Engineering & System Safety, 2007, 92(6): 771 − 784.
[9] EHRE M, PAPAIOANNOU I, STRAUB D. A framework for global reliability sensitivity analysis in the presence of multi-uncertainty [J]. Reliability Engineering & System Safety, 2020, 195: 106726.
[10] SARAZIN G, MORIO J, LAGNOUX A, et al. Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty [J]. Reliability Engineering & System Safety, 2021, 215: 107733.
[11] ZHANG K C, LU Z Z, CHENG K, et al. Global sensitivity analysis for multivariate output model and dynamic models [J]. Reliability Engineering & System Safety, 2020, 204: 107195.
[12] 陈超, 吕震宙. 模糊分布参数的全局灵敏度分析新方法[J]. 工程力学, 2016, 33(2): 25 − 33. doi: 10.6052/j.issn.1000-4750.2014.07.0624 CHEN Chao, LYU Zhenzhou. A new method for global sensitivity analysis of fuzzy distribution parameters [J]. Engineering Mechanics, 2016, 33(2): 25 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0624
[13] CUI L J, LYU Z Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution [J]. Science China Technological Sciences, 2010, 53(4): 1138 − 1145. doi: 10.1007/s11431-009-0386-8
[14] LI L Y, LYU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution [J]. Structural Safety, 2012, 38: 40 − 47. doi: 10.1016/j.strusafe.2012.04.001
[15] SALTELLI A. Sensitivity analysis for importance assessment [J]. Risk Analysis, 2002, 22(3): 579 − 590. doi: 10.1111/0272-4332.00040
[16] PLISCHKE E, BORGONOVO E, SMITH C L. Global sensitivity measures from given data [J]. European Journal of Operational Research, 2013, 226(3): 536 − 550. doi: 10.1016/j.ejor.2012.11.047
[17] ZHAI Q Q, YANG J, ZHAO Y. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study [J]. Reliability Engineering & System Safety, 2014, 131: 66 − 82.
[18] 赵翔, 李洪双. 基于交叉熵和空间分割的全局可靠性灵敏度分析[J]. 航空学报, 2018, 39(2): 179 − 189. ZHAO Xiang, LI Hongshuang. Global reliability sensitivity analysis using cross entropy method and space partition [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 179 − 189. (in Chinese)
[19] VELARDE J, KRAMHØFT C, SØRENSEN J D. Global sensitivity analysis of offshore wind turbine foundation fatigue loads [J]. Renewable Energy, 2019, 140: 177 − 189. doi: 10.1016/j.renene.2019.03.055
[20] DAMGAARD M, ANDERSEN L V, IBSEN L B. Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions [J]. Ocean Engineering, 2015, 101: 227 − 234. doi: 10.1016/j.oceaneng.2015.04.039
[21] ZHOU S T, MÜLLER K, LI C, et al. Global sensitivity study on the semisubmersible substructure of a floating wind turbine: Manufacturing cost, structural properties and hydrodynamics [J]. Ocean Engineering, 2021, 221: 108585. doi: 10.1016/j.oceaneng.2021.108585
[22] HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models [J]. Reliability Engineering & System Safety, 1996, 52(1): 1 − 17.
[23] LI C Z, MAHADEVAN S. An efficient modularized sample-based method to estimate the first-order Sobol׳ index [J]. Reliability Engineering & System Safety, 2016, 153: 110 − 121.
[24] RONOLD K O, LARSEN G C. Reliability-based design of wind-turbine rotor blades against failure in ultimate loading [J]. Engineering Structures, 2000, 22(6): 565 − 574. doi: 10.1016/S0141-0296(99)00014-0
[25] HU Z, DU X P. Time-dependent reliability analysis for turbine blade in extreme wind loading [C]. Rolla, Missouri: Proceedings of the 5th Annual ISC Graduate Research Symposium, 2011.
[26] DS 472, Dansk ingeniorforenings og ingeniør-sammenslutningens norm for last og sikkerhed for vindmøllekonstruktioner [S]. Denmark: Dansk Ingenioerforening, 1992.
[27] 陈安杰, 王策, 贾娅娅, 等. 基于BEM的风力机叶片气动性能计算分析[J]. 工程力学, 2021, 38(增刊 1): 264 − 268. doi: 10.6052/j.issn.1000-4750.2020.05.S035 CHEN Anjie, WANG Ce, JIA Yaya, et al. Computation and analysis of aerodynamic performance of wind turbine blade based on BEM [J]. Engineering Mechanics, 2021, 38(Suppl 1): 264 − 268. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S035
[28] 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1 − 7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04 YANG Yang, ZENG Pan, LEI Liping. Concept and development of novel blade structure of large horizontal-axis wind turbine [J]. Engineering Mechanics, 2019, 36(10): 1 − 7. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.ST04