PSEUDO STATIC TEST ON A SINGLE-SPAN TWO-STORY PRECAST CONCRETE FRAME WITH ENERGY DISSIPATION CLADDING PANELS
-
摘要:
该文在对一个含减震外挂墙板平面框架(简称减震结构)以及一个作为对比的纯框架(简称抗震结构)进行混合试验的基础上,进一步对其单跨2层试验子结构进行了拟静力试验,研究了两结构在水平地震作用下的受力过程、损伤模式及减震外挂墙板对主体结构抗震性能的影响。研究结果表明:减震结构和抗震结构的破坏机制均为梁端和柱底出现塑性铰的梁铰机制,减震外挂墙板未改变主体结构的破坏模式;减震结构中,在最大层间位移角达到1/55之前,消能器呈预期的履带式滚动变形,此后由于外挂墙板的面内转动变形,消能器水平剪切变形值增加不大,且圆弧段产生明显变形;试验过程中减震外挂墙板未出现裂缝;墙板与框架间上部线连接处裂缝宽度较小,连接钢筋应变也较小,表明连接可靠;两试件均具有较好的变形能力和耗能能力;在相同位移级别下,减震结构的刚度、极限承载力和耗能能力均更好。
Abstract:Based on hybrid tests on a planar frame structure with energy dissipation cladding panels (i.e., damping structure) and a planar frame structure (i.e., seismic structure), pseudo static tests were conducted on the substructures to further evaluate the mechanical behavior, damage pattern of these two kinds of structures and the effect of the energy dissipation cladding panels (EDCPs) on the seismic performance of the main structure. The results indicated that beam hinge mechanism, in which plastic hinges form at the beam ends and bottom of the columns, was achieved on both the two specimens, indicating that the EDCPs did not change the damage mode of the main structure. In the damping structure, the U-shaped steel dampers (USDs) maintained the expected crawler-type rolling deformation mode before the maximum inter-story drift reached 1/55. However, due to the in-plane rotation of the cladding panel, only limited increase of the horizontal shear deformation of the USDs occurred, and obvious deformation at the arc segment was observed. No crack appeared on the cladding panels during the test. The widths of the cracks at the line connection and the strain of the connecting reinforcement were small, indicating that the line connection was reliable. Both the two specimens showed satisfying deformation capacity and energy dissipation capacity. Compared with the seismic structure, the damping structure showed better stiffness, load bearing capacity and energy dissipation capacity under the same displacement.
-
-
表 1 混凝土立方体抗压强度结果
Table 1 Results of cubic compressive strength tests of concrete
混凝土部位 立方体抗压强度均值
fcu, m /MPaS-1预制框架 40.9 S-2外挂墙板 37.3 S-2框架预制部分 36.8 S-2框架现浇部分 32.1 表 2 钢筋材性试验结果
Table 2 Results of uniaxial tensile strength tests of reinforcements
型号 屈服强度
fy/MPa抗拉强度fu/MPa 伸长率
e/(%) 8431.2 653.9 15.8 10480.1 650.0 15.0 16447.6 621.5 21.7 18452.6 638.1 19.0 表 3 加载制度
Table 3 Loading protocol
加载控制方法 荷载控制(每级循环1圈) 位移控制(每级循环3圈) 每一级荷载值
或位移值±50 kN, ±100 kN,
±150 kN±30 mm, ±45 mm, ±60 mm,
±75 mm, ±90 mm, ±105 mm表 4 试验现象
Table 4 Test phenomena
加载
级别抗震结构S-1 减震结构S-2 ±50 kN 第一层和第二层的顶部位移分别为3.3 mm、6.6 mm(相应的层间位移角均为1/500);结构上的裂缝均为混合试验时已出现的裂缝,无新裂缝出现。第一层左侧梁端纵筋屈服 第一层和第二层顶部位移分别为1.3 mm、3.8 mm(相应的层间位移角分别为1/1269、1/660);结构无新的裂缝出现;第一层、第二层消能器均已发生屈服 ±150 kN 第一层和第二层的顶部位移分别为13.6 mm、25.2 mm(相应的层间位移角分别为1/121、1/142);第一层及第二层梁端出现多条弯曲裂缝和弯剪斜裂缝,第二层梁柱核心区出现微小的裂缝;梁端和柱底最大裂缝宽度为0.3 mm左右。第一层及二层梁端纵筋均屈服 第一层和第二层的顶部位移分别为7.5 mm、18.3 mm(相应的层间位移角为1/220、1/153);第一层及第二层梁端出现多条弯曲裂缝和弯剪斜裂缝;梁端和柱底最大裂缝宽度为0.3 mm左右。第一层梁端纵筋屈服。第一层及第二层消能器的最大剪切变形分别为7.9 mm、9.2 mm,与层间位移接近 ±30 mm 第一层和第二层的顶部位移分别为16.0 mm、29.8 mm(相应的层间位移角为1/103、1/120);梁端出现多条新的裂缝,第二层梁柱节点核心区出现一条水平裂缝,柱底出现数条水平裂缝;第一层柱底纵筋屈服 第一层和第二层的顶部位移分别为14.2 mm、30.0 mm(相应的层间位移角为1/116、1/111);第一层梁端出现数条弯曲裂缝,第二层梁中部出现弯剪斜裂缝。第二层梁端纵筋和柱底纵筋屈服;第一层及第二层消能器的最大剪切变形分别为13.8 mm、15.8 mm ±60 mm 第一层和第二层的顶部位移分别为31.5 mm、60.9 mm(相应的第一层和第二层层间位移角为1/53、1/56);第一层梁端底部混凝土保护层出现轻微剥落现象 第一层和第二层的顶部位移分别为30.2 mm、60.0 mm(相应的第一层和第二层层间位移角为1/55、1/55);第二层梁中部出现多条弯剪斜裂缝,柱底坐浆层出现多条竖向受压裂缝;第一层、第二层梁端底部混凝土出现轻微剥落现象;墙板顶部与框架梁间连接处出现纵向裂缝;第一层及第二层消能器最大剪切变形分别为27.4 mm、32.7 mm ±90 mm 第一层和第二层的顶部位移分别为47.4 mm、90.4 mm(相应的第一层和第二层层间位移角为1/35、1/37);左侧柱脚混凝土保护层出现轻微剥落现象,第一层右侧梁端楼板下方保护层混凝土剥落严重 第一层和第二层的顶部位移分别为44.9 mm、90.0 mm(相应的第一层和第二层层间位移角为1/37、1/37);第一层右侧梁端楼板下方保护层混凝土剥落严重;墙板顶部与框架梁间连接处纵向裂缝有所开展(图7);墙板顶部与梁间最外侧连接钢筋的最大应变值为1067 με,远未达到屈服;加载至第3圈时,第二层右侧消能器连接螺栓松动,消能器出现面外转动(图7);消能器圆弧段出现较明显的形状改变,不再呈理想的圆弧状,此时第一层及第二层消能器最大剪切变形分别为39.0 mm、39.8 mm ±105 mm 第一层和第二层的顶部位移分别为54.5 mm、105.0 mm(相应的第一层和第二层层间位移角为1/30、1/33);柱脚混凝土保护层剥落面积有所增大(图6);第一层梁端楼板下方混凝土压碎严重,纵筋压屈,如图6所示;第二层梁端混凝土压碎程度明显较第一层偏低 第一层和第二层的顶部位移分别为50.4 mm、105.0 mm(相应的第一层和第二层层间位移角为1/33、1/30);柱脚混凝土部分保护层压碎剥落(图7),第一层右侧梁端混凝土剥落最为严重,纵筋压屈,如图7所示;第二层梁端混凝土剥落较为轻微;墙板顶部与梁间裂缝宽度不大,且连接钢筋均未屈服;墙板上无明显裂缝;消能器水平剪切变形没有明显的增加,圆弧段变形更加明显,此时第一层及第二层消能器最大剪切变形分别为42.1 mm、42.9 mm 表 5 骨架曲线特征点及位移延性系数
Table 5 Characteristic points of the skeleton curves and deformation capacity coefficient
试件 方向 屈服点 峰值点 极限点 延性系数Δu/Δy 极限位移角Δu/H 屈服荷载
Py/kN屈服位移
Δy/mm峰值荷载
Pp/kN峰值位移
Δp/mm极限荷载
Pu/kN极限位移
Δu/mm抗震结构S-1 正向 167.2 34.15 199.4 59.99 188.4 105.0 3.07 1/31 负向 149.6 29.62 185.0 89.99 181.9 105.0 3.54 1/31 平均 158.4 31.89 192.2 74.99 185.2 105.0 3.29 1/31 减震结构S-2 正向 203.7 27.38 249.9 59.94 221.9 105.0 3.83 1/31 负向 181.3 29.25 210.4 74.95 188.6 105.0 3.59 1/31 平均 192.5 28.32 230.2 67.45 205.3 105.0 3.71 1/31 表 6 不同顶点位移下试件能量耗散系数E
Table 6 Energy dissipation coefficient E of the specimens under different top displacement
试件 能量耗散系数 E 30 mm 45 mm 60 mm 75 mm 90 mm 105 mm S-1 0.91 1.00 1.16 1.30 1.43 1.55 S-2 1.20 1.31 1.38 1.48 1.64 1.80 -
[1] LOSCH E D, HYNES P W, ANDREWS JR R, et al. State of the art of precast/prestressed concrete sandwich wall panels [J]. PCI Journal, 2011, 56(2): 131 − 176.
[2] COHEN J M. Literature review on seismic performance of building cladding systems [R]. Gaithersburg: National Institute of Standards and Technology, 1995.
[3] 薛伟辰, 王东方. 预制混凝土板、墙体系发展现状[J]. 工业建筑, 2002, 32(12): 57 − 60. doi: 10.3321/j.issn:1000-8993.2002.12.019 XUE Weichen, WANG Dongfang. Progress of precast concrete slab and wall systems [J]. Industrial Construction, 2002, 32(12): 57 − 60. (in Chinese) doi: 10.3321/j.issn:1000-8993.2002.12.019
[4] 田春雨, 黄小坤, 李然. 装配式混凝土结构的研究与应用[J]. 工程质量, 2015, 33(4): 25 − 30. doi: 10.3969/j.issn.1671-3702.2015.04.006 TIAN Chunyu, HUANG Xiaokun, LI Ran. The research and application of prefabricated concrete structure [J]. Construction Quality, 2015, 33(4): 25 − 30. (in Chinese) doi: 10.3969/j.issn.1671-3702.2015.04.006
[5] 黄远, 张锐, 朱正庚, 等. 外墙挂板的混凝土框架结构抗震性能试验研究[J]. 湖南大学学报(自然科学版), 2015, 42(7): 36 − 41. doi: 10.16339/j.cnki.hdxbzkb.2015.07.006 HUANG Yuan, ZHANG Rui, ZHU Zhenggeng, et al. Experimental study on seismic performance of concrete frame structure with exterior cladding walls [J]. Journal of Hunan University (Natural Sciences), 2015, 42(7): 36 − 41. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2015.07.006
[6] 朱永明, 杨佳林, 薛伟辰. 四边简支预制混凝土无机保温夹心墙体静力性能试验研究[J]. 混凝土与水泥制品, 2013(8): 58 − 61. doi: 10.3969/j.issn.1000-4637.2013.08.015 ZHU Yongming, YANG Jialin, XUE Weichen. Static behaviors test research on precast concrete inorganic insulation sandwich composite wall panel with four sides [J]. China Concrete and Cement Products, 2013(8): 58 − 61. (in Chinese) doi: 10.3969/j.issn.1000-4637.2013.08.015
[7] 陈涛, 李国强, 田春雨, 等. 线支承式预制外挂墙板抗震性能试验研究[J]. 建筑科学, 2014, 30(3): 53 − 58. doi: 10.3969/j.issn.1002-8528.2014.03.011 CHEN Tao, LI Guoqiang, TIAN Chunyu, et al. Experimental study on seismic behavior of line bearing precast concrete cladding panels [J]. Building Science, 2014, 30(3): 53 − 58. (in Chinese) doi: 10.3969/j.issn.1002-8528.2014.03.011
[8] 种迅, 姚华庭, 蒋庆, 等. 含线连接夹心保温外挂墙板装配式混凝土剪力墙结构抗震性能研究[J]. 建筑结构学报, 2019, 40(12): 51 − 59. CHONG Xun, YAO Huating, JIANG Qing, et al. Seismic performance of precast concrete shear wall structure with sandwich facade panels and linear support [J]. Journal of Building Structures, 2019, 40(12): 51 − 59. (in Chinese)
[9] 周颖, 顾安琪, 鲁懿虬, 等. 大型装配式自复位剪力墙结构振动台试验研究[J]. 土木工程学报, 2020, 53(10): 62 − 71. doi: 10.15951/j.tmgcxb.2020.10.006 ZHOU Ying, GU Anqi, LU Yiqiu, et al. Large-scale shaking table experimental study on a low-damage self-centering wall building [J]. China Civil Engineering Journal, 2020, 53(10): 62 − 71. (in Chinese) doi: 10.15951/j.tmgcxb.2020.10.006
[10] 徐龙河, 张焱, 肖水晶. 底部铰支自复位钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2020, 37(6): 122 − 130. doi: 10.6052/j.issn.1000-4750.2019.04.0235 XU Longhe, ZHANG Yan, XIAO Shuijing. Design and behavior study on bottom hinged self-centering reinforced concrete shear wall [J]. Engineering Mechanics, 2020, 37(6): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0235
[11] 谢鲁齐, 吴京, 章锦洋, 等. 可更换耗能连接力学机理及变形性能研究[J]. 工程力学, 2020, 37(6): 186 − 195. doi: 10.6052/j.issn.1000-4750.2019.08.0475 XIE Luqi, WU Jing, ZHANG Jinyang, et al. Study on the mechanical and deformation properties of replaceable energy dissipation connectors [J]. Engineering Mechanics, 2020, 37(6): 186 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0475
[12] 解琳琳, 陈越, 李爱群, 等. 防屈曲可更换伸臂桁架弦杆抗震性能试验研究[J]. 工程力学, 2022, 39(3): 96 − 103. doi: 10.6052/j.issn.1000-4750.2021.01.0036 XIE Linlin, CHEN Yue, LI Aiqun, et al. Experimental research on seismic performance of buckling restrained replaceable chord in outrigger [J]. Engineering Mechanics, 2022, 39(3): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0036
[13] 种迅, 宋磊, 陈长林, 等. 含减震外挂墙板装配式混凝土剪力墙结构抗震性能研究[J]. 工业建筑, 2020, 50(1): 40 − 46. doi: 10.13204/j.gyjz202001008 CHONG Xun, SONG Lei, CHEN Changlin, et al. Research on the seismic behavior of facade panel of prefabricated concrete shear wall with damper [J]. Industrial Construction, 2020, 50(1): 40 − 46. (in Chinese) doi: 10.13204/j.gyjz202001008
[14] 李久鹏. 工业化住宅外挂墙板耗能减震性能研究 [D]. 天津: 天津大学, 2009. LI Jiupeng. Study on vibration damping properties of external wall panels of industrialized housing [D]. Tianjin: Tianjin University, 2009. (in Chinese)
[15] BAIRD A, PALERMO A, PAMPANIN S. Controlling seismic response using passive energy dissipating cladding connections [C]// New Zealand Society for Earthquake Engineering 2013 Technical Conference. Wellington, New Zealand Society for Earthquake Engineering, 2013: 1 − 8.
[16] 杨云, 石晓猛. 外挂墙板耗能节点的设计研究[J]. 低温建筑技术, 2013, 35(3): 73 − 75. doi: 10.3969/j.issn.1001-6864.2013.03.032 YANG Yun, SHI Xiaomeng. Research on design of energy dissipation nodes of external wall panels [J]. Low Temperature Architecture Technology, 2013, 35(3): 73 − 75. (in Chinese) doi: 10.3969/j.issn.1001-6864.2013.03.032
[17] 于敬海, 丁永君, 李久鹏, 等. 设置耗能外挂墙板结构的抗震性能[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(增刊 1): 122 − 126. YU Jinghai, DING Yongjun, LI Jiupeng, et al. Seismic behavior of structure with energy dissipation external wall panel [J]. Journal of Tianjin University (Science and Technology), 2015, 48(Suppl 1): 122 − 126. (in Chinese)
[18] DAL LAGO B, BIONDINI F, TONIOLO G. Seismic performance of precast concrete structures with energy dissipating cladding panel connection systems [J]. Structural Concrete, 2018, 19(6): 1908 − 1926. doi: 10.1002/suco.201700233
[19] KARADOGAN F, YUKSEL E, KHAJEHDEHI A, et al. Cyclic behavior of reinforced concrete cladding panels connected with energy dissipative steel cushions [J]. Engineering Structures, 2019, 189: 423 − 439. doi: 10.1016/j.engstruct.2019.03.092
[20] GB 50010−2010, 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2015. GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2015. (in Chinese)
[21] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2016. GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture Industry Press, 2016. (in Chinese)
[22] 潘鹏, 叶列平, 钱稼茹, 等. 建筑结构消能减震设计与案例 [M]. 北京: 清华大学出版社, 2014. PAN Peng, YE Lieping, QIAN Jiaru, et al. Seismic design of building structures equipped with energy dissipation devices [M]. Beijing: Tsinghua University Press, 2014. (in Chinese)
[23] JGJ/T 101−2015, 建筑抗震试验规程 [S]. 北京: 中国建筑工业出版社, 2015. JGJ/T 101−2015, Specification for seismic test of buildings [S]. Beijing: China Architecture Industry Press, 2015. (in Chinese)
[24] 陆新征, 叶列平, 潘鹏, 等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅰ: 框架试验[J]. 建筑结构, 2012, 42(11): 19 − 22, 26. LU Xinzheng, YE Lieping, PAN Peng, et al. Pseudo-static collapse experiments and numerical prediction competition of RC frame structure Ⅰ: RC frame experiment [J]. Building Structure, 2012, 42(11): 19 − 22, 26. (in Chinese)
[25] 过镇海, 时旭东. 钢筋混凝土原理和分析 [M]. 北京: 清华大学出版社, 2003. GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyses [M]. Beijing: Tsinghua University Press, 2003. (in Chinese)