考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究

杨旭, 王蕊, 赵晖, 樊伟, 毛敏

杨旭, 王蕊, 赵晖, 樊伟, 毛敏. 考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究[J]. 工程力学, 2023, 40(9): 61-73. DOI: 10.6052/j.issn.1000-4750.2022.01.0019
引用本文: 杨旭, 王蕊, 赵晖, 樊伟, 毛敏. 考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究[J]. 工程力学, 2023, 40(9): 61-73. DOI: 10.6052/j.issn.1000-4750.2022.01.0019
YANG Xu, WANG Rui, ZHAO Hui, FAN Wei, MAO Min. STUDY ON THE IMPACT RESISTANCE OF DOUBLE-COLUMN CONCRETE-FILLED STEEL TUBULAR BRIDGE PIERS CONSIDERING THE SUPERSTRUCTURE MASS[J]. Engineering Mechanics, 2023, 40(9): 61-73. DOI: 10.6052/j.issn.1000-4750.2022.01.0019
Citation: YANG Xu, WANG Rui, ZHAO Hui, FAN Wei, MAO Min. STUDY ON THE IMPACT RESISTANCE OF DOUBLE-COLUMN CONCRETE-FILLED STEEL TUBULAR BRIDGE PIERS CONSIDERING THE SUPERSTRUCTURE MASS[J]. Engineering Mechanics, 2023, 40(9): 61-73. DOI: 10.6052/j.issn.1000-4750.2022.01.0019

考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究

基金项目: 国家自然科学基金项目(52108162) ;山西省自然科学基金项目(20210302123119) ;山西交通控股集团科技项目(20-JKKJ-28)
详细信息
    作者简介:

    杨旭(1999−),男,山西人,硕士生,主要从事组合结构基本力学性能研究 (E-mail: yangxu_yc@163.com)

    王蕊(1979−),女,山西人,教授,博士,主要从事组合结构防灾减灾研究 (E-mail: wangrui@tyut.edu.cn)

    樊伟(1985−),男,江西人,教授,博士,主要从事桥梁结构抗冲击与防护研究 (E-mail: wfan@hnu.edu.cn)

    毛敏(1983−),男,湖北人,正高工,硕士,主要从事桥梁抗震与健康监测研究 (E-mail: 13466855439@163.com)

    通讯作者:

    赵晖(1988−),男,山西人,副教授,博士,主要从事组合结构抗火与抗撞研究 (E-mail: zhaohui01@tyut.edu.cn)

  • 中图分类号: TU398+.9

STUDY ON THE IMPACT RESISTANCE OF DOUBLE-COLUMN CONCRETE-FILLED STEEL TUBULAR BRIDGE PIERS CONSIDERING THE SUPERSTRUCTURE MASS

  • 摘要: 钢管混凝土(CFST)构件可充分发挥钢管与核心混凝土优点,在桥梁墩柱中已得到应用,抗撞设计是其在墩柱中推广应用的关键问题。因此,该文基于LS-DYNA有限元软件建立了56个车辆撞击双柱CFST桥墩分析模型并进行抗撞机理与参数分析。基于前期落锤撞击结果与实车撞击试验验证了模型可靠性;对典型工况下撞击力和桥墩塑性应变发展、内力分布和能量转换进行研究并重点分析了含钢率、轴压比、货物刚度、车辆质量和速度对CFST桥墩撞击力和侧向位移分布的影响规律;采用等效静力法计算得到25 ms等效车辆撞击力(ESF25)并对AASHTO规程建议值进行评估,提出车撞CFST桥墩撞击力预测公式。结果表明:车辆撞击下CFST桥墩钢管与核心混凝土协同工作,钢管是主要耗能部件;由于上部结构和桥墩惯性作用,不同撞击时刻桥墩内力分布具有显著差异;车辆质量与速度对撞击力发展影响显著,含钢率与轴压比影响较小,货物弹性模量在2000 MPa内变化时影响较大;建议的撞击力公式可较好预测考虑上部质量影响的CFST桥墩撞击力。
    Abstract: Concrete-filled steel tubular (CFST) members combine the advantages of steel tube and core concrete, which has been gradually employed in bridge piers, and the impact resistance is a key issue to promote its application. For this purpose, a total of 56 finite element (FE) models of double-column CFST piers subjected to vehicle collision were established using LS-DYNA software, and mechanism analysis as well as parameter studies of impact resistance were performed. The FE models were verified by comparing with the data of the drop-hammer impact and the actual vehicle-impact test. The impact force, the plastic strain development, internal force distribution and energy conversion of typical CFST piers were investigated. The effects of steel ratio, axial-load ratio, cargo stiffness, vehicle mass and speed on the impact force and lateral-displacement distribution were analyzed. The equivalent static force method was used to calculate the 25 ms equivalent vehicle impact force (ESF25), and then the recommended value of AASHTO code was evaluated. The equation for the impact force of CFST piers was proposed. The results showed that steel tubes and concrete can work together well under vehicle impact, and steel tubes are the main energy-absorbing component. Due to the existence of the upper mass and the inertial force, the internal force distribution of the piers corresponding to different impact phases is significantly different. Parametric studies indicated that the vehicle mass and speed have significant influences on the evolution of impact force, while the effects of steel ratio and axial load ratio are marginal. In addition, the Young’s modulus of cargo has an obvious effect when it varies within 2000 MPa. The proposed equation could well predict the impact force of CFST piers considering the influence of the upper mass.
  • 图  1   桥梁有限元模型 /mm

    Figure  1.   FE model of the bridge structure

    图  2   福特F800卡车模型

    Figure  2.   Ford F800 truck model

    图  3   有限元与试验结果对比(破坏模式)

    Figure  3.   Comparison of the failure pattern between FE and test results

    图  4   有限元与试验结果对比(撞击力与挠度)

    Figure  4.   Comparison of the impact force and deflection between FE and test results

    图  5   车辆破坏模式对比

    Figure  5.   Failure patterns of trucks

    图  6   车辆撞击力时程曲线对比

    Figure  6.   Comparison of impact force time-histories

    图  7   车辆撞击力时程曲线图

    Figure  7.   Time-histories curve of vehicle impact force

    图  8   撞击力随高度和时间分布等值线图

    Figure  8.   Contours of impact force distribution along the pier height and time

    9   桥墩塑性应变发展系列图

    9.   Plastic strain development of bridge piers

    10   沿桥墩高度截面弯矩和剪力分布图

    10.   Bending moments and shear forces along pier height

    图  11   碰撞过程能量变化时程曲线

    Figure  11.   Energy transformation during collision

    图  12   碰撞过程桥墩部件能量分配

    Figure  12.   Energy distribution among bridge pier components during collision

    图  13   含钢率影响

    Figure  13.   Influence of steel ratio

    图  14   轴压比影响

    Figure  14.   Influence of axial-load ratio

    图  15   货物刚度影响

    Figure  15.   Influence of cargo stiffness

    图  16   车辆速度影响

    Figure  16.   Influence of vehicle velocity

    图  17   车辆质量影响

    Figure  17.   Influence of vehicle mass

    图  18   相关参数对ESF25的影响

    Figure  18.   Influences of related parameters on ESF25

    图  19   有限元计算值与公式结果对比

    Figure  19.   Comparison between FE and prediction results

    表  1   材料参数

    Table  1   Material parameters

    部件 材料模型 参数
    混凝土 *MAT_072R3
    (*MAT_CONCRETE_DAMAGE_REAL3)
    密度 2400 kg/m3
    抗压强度 31.6 MPa
    泊松比 0.2
    钢管 *MAT_003
    (*MAT_PLASTIC_KINEMATIC)
    密度 7850 kg/m3
    弹性模量 201 GPa
    屈服强度 355 MPa
    切线模量 1500 MPa
    泊松比 0.3
    失效应变 0.2
    钢筋 *MAT_003
    (*MAT_PLASTIC_KINEMATIC)
    密度 7850 kg/m3
    弹性模量 201 GPa
    屈服强度 400 MPa
    泊松比 0.3
    失效应变 0.2
    下载: 导出CSV

    表  2   试件参数

    Table  2   Parameters of specimen

    试件编号 边界条件 试件长度/mm 外径×壁厚/
    (mm×mm)
    撞击能量/
    kJ
    来源
    DZFS4 固简支 1200 114×3.50 16.65 文献[22]
    CC1 两端固支 1940 180×3.65 19.72 文献[23]
    CS3 固简支 2400 180×3.65 14.77
    SS2 两端简支 2800 180×3.65 14.89
    下载: 导出CSV

    表  3   设计工况参数

    Table  3   Parameters of designed conditions

    参数类别 编号 含钢率α 轴压比n 货物弹性模量E/MPa 车辆质量m/t 车辆速度v/(km/h)
    含钢率 M12-V100-α6-n0.1-E2000 0.06 0.1 2000 12 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M12-V100-α10-n0.1-E2000 0.10 0.1 2000 12 100
    M12-V100-α12-n0.1-E2000 0.12 0.1 2000 12 100
    轴压比 M12-V100-α8-n0.01-E2000 0.08 0.01 2000 12 100
    M12-V100-α8-n0.03-E2000 0.08 0.03 2000 12 100
    M12-V100-α8-n0.07-E2000 0.08 0.07 2000 12 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    货物弹性模量 M12-V100-α8-n0.1-E200 0.08 0.1 200 12 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M12-V100-α8-n0.1-E20000 0.08 0.1 20000 12 100
    M12-V100-α8-n0.1-E200000 0.08 0.1 200000 12 100
    车辆质量 M6-V100-α8-n0.1-E2000 0.08 0.1 2000 6 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M18-V100-α8-n0.1-E2000 0.08 0.1 2000 18 100
    M24-V100-α8-n0.1-E2000 0.08 0.1 2000 24 100
    车辆速度 M12-V80-α8-n0.1-E2000 0.08 0.1 2000 12 80
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M12-V120-α8-n0.1-E2000 0.08 0.1 2000 12 120
    M12-V140-α8-n0.1-E2000 0.08 0.1 2000 12 140
    注:“M12-V100-α8-n0.1-E2000”表示车辆质量为12 t、速度为100 km/h、桥墩含钢率为8%、轴压比为0.1、货物弹性模量为2000 MPa。
    下载: 导出CSV
  • [1] 韩林海. 钢管混凝土结构——理论与实践[M]. 北京: 科学出版社, 2016.

    HAN Linhai. Concrete filled steel tubular structures-theory and practice [M]. Beijing: Science Press, 2016. (in Chinese)

    [2] 王志滨, 吴扬杭, 余鑫, 等. 圆端形钢管混凝土柱偏压性能研究[J]. 建筑结构学报, 2022, 43(4): 177 − 185.

    WANG Zhibin, WU Yanghang, YU Xin, et al. Behavior of concrete-filled round-ended steel tubular column under eccentric compression [J]. Journal of Building Structures, 2022, 43(4): 177 − 185. (in Chinese)

    [3]

    BUTH C E, WILLIAMS W F, BRACKIN M S, et al. Analysis of large truck collisions with bridge piers: phase 1, Report of guidelines for designing bridge piers and abutments for vehicle collisions [R]. Texas: Texas Transportation Institute Proving Ground, 2010.

    [4] 陈林. 桥墩防车辆撞击研究[D]. 长沙: 湖南大学, 2015.

    CHEN Lin. Research on bridge piers subjected to vehicle collisions [D]. Changsha: Hunan University, 2015. (in Chinese)

    [5]

    SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact [J]. International Journal of Impact Engineering, 2012, 43: 52 − 62. doi: 10.1016/j.ijimpeng.2011.11.007

    [6] 樊伟, 毛薇, 庞于涛, 等. 钢筋混凝土柱式桥墩抗车撞可靠度分析研究[J]. 中国公路学报, 2021, 34(2): 162 − 176.

    FAN Wei, MAO Wei, PANG Yutao, et al. Reliability analysis of reinforced concrete column bridge piers subjected to vehicle collisions [J]. China Journal of Highway and Transport, 2021, 34(2): 162 − 176. (in Chinese)

    [7] 肖岩, 陈林, 肖果, 等. 防撞柱实车碰撞性能研究[J]. 振动与冲击, 2013, 32(11): 1 − 6.

    XIAO Yan, CHEN Lin, XIAO Guo, et al. Test for anti-ram bollards based on truck collision [J]. Journal of Vibration and Shock, 2013, 32(11): 1 − 6. (in Chinese)

    [8] 陈林, 曾玉烨, 颜泽峰, 等. 车辆撞击下钢筋混凝土桥墩的动力响应及损伤特征[J]. 振动与冲击, 2019, 38(13): 261 − 267, 273.

    CHEN Lin, ZENG Yuye, YAN Zefeng, et al. Dynamic response and damage characteristics of a RC pier under vehicle impacting [J]. Journal of Vibration and Shock, 2019, 38(13): 261 − 267, 273. (in Chinese)

    [9]

    DO T V, PHAM T M, HAO H. Dynamic responses and failure modes of bridge columns under vehicle collision [J]. Engineering Structures, 2018, 156: 243 − 259. doi: 10.1016/j.engstruct.2017.11.053

    [10]

    FAN W, XU X, ZHANG Z, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions [J]. Engineering Structures, 2018, 173: 251 − 268. doi: 10.1016/j.engstruct.2018.06.113

    [11]

    AUYEUNG S, ALIPOUR A, SAINI D. Performance-based design of bridge piers under vehicle collision [J]. Engineering Structures, 2019, 191: 752 − 765. doi: 10.1016/j.engstruct.2019.03.005

    [12]

    CHEN L, QIAN J, TU B, et al. Performance-based risk assessment of reinforced concrete bridge piers subjected to vehicle collision [J]. Engineering Structures, 2021, 229: 111640. doi: 10.1016/j.engstruct.2020.111640

    [13]

    SAINI D, SHAFEI B. Performance of concrete-filled steel tube bridge columns subjected to vehicle collision [J]. Journal of Bridge Engineering, 2019, 24(8): 04019074. doi: 10.1061/(ASCE)BE.1943-5592.0001439

    [14]

    DO T V, PHAM T M, HAO H. Impact force profile and failure classification of reinforced concrete bridge columns against vehicle impact [J]. Engineering Structures, 2019, 183: 443 − 458. doi: 10.1016/j.engstruct.2019.01.040

    [15]

    JONES N. Structural Impact [M]. Cambridge UK: Cambridge University Press, Cambridge, 1997.

    [16]

    LI H, CHEN W, PHAM T M, et al. Analytical and numerical studies on impact force profile of RC beam under drop weight impact [J]. International Journal of Impact Engineering, 2021, 147: 103743. doi: 10.1016/j.ijimpeng.2020.103743

    [17]

    MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [C]. Orlando: 28th DDESB Seminar, 1998.

    [18]

    LI R W, WU H, YANG Q T, et al. Vehicular impact resistance of seismic designed RC bridge piers [J]. Engineering Structures, 2020, 220: 111015. doi: 10.1016/j.engstruct.2020.111015

    [19] 康昌敏, 王蕊, 朱翔. 轴压比对钢管混凝土柱侧向冲击性能影响研究[J]. 工程力学, 2020, 37(增刊 1): 254 − 260. doi: 10.6052/j.issn.1000-4750.2019.04.S047

    KANG Changmin, WANG Rui, ZHU Xiang. The influence of axial compression ratio on the lateral impact performance of concrete filled steel tube columns [J]. Engineering Mechanics, 2020, 37(Suppl 1): 254 − 260. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S047

    [20] 李佳奇, 王蕊, 赵晖, 等. 外包不锈钢中空夹层钢管混凝土柱耐火性能研究[J]. 工程力学, 2020, 37(10): 125 − 133. doi: 10.6052/j.issn.1000-4750.2019.11.0679

    LI Jiaqi, WANG Rui, ZHAO Hui, et al. Study on the fire performance of concrete-filled double-skin tubular columns with external stainless steel tubes [J]. Engineering Mechanics, 2020, 37(10): 125 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0679

    [21] 安国青, 赵晖, 王蕊, 等. 外包不锈钢圆中空夹层钢管混凝土柱抗撞计算方法研究[J]. 工程力学, 2021, 38(6): 227 − 236. doi: 10.6052/j.issn.1000-4750.2020.11.0823

    AN Guoqing, ZHAO Hui, WANG Rui, et al. Calculation method for impact resistance of circular concrete-filled double-skin tubular columns with external stainless steel tube [J]. Engineering Mechanics, 2021, 38(6): 227 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0823

    [22] 王蕊. 钢管混凝土结构构件在侧向撞击下动力响应及其损伤破坏的研究[D]. 太原: 太原理工大学, 2008.

    WANG Rui. Studies on the dynamic response and damage failure of concrete filled steel tube under lateral impact [D]. Taiyuan: Taiyuan University of Technology, 2008. (in Chinese)

    [23] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京: 清华大学, 2012.

    HOU Chuanchuan. Study on performance of circular Concrete-filled Steel Tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012. (in Chinese)

    [24]

    ZHAO H, WANG R, HOU C C, et al. Performance of circular CFDST members with external stainless steel tube under transverse impact loading [J]. Thin-Walled Structures, 2019, 145: 106380. doi: 10.1016/j.tws.2019.106380

    [25]

    IVORY M A. Crash test report for perimeter barriers and gates tested to SD-STD-02.01, Revision A. Test report No. TR-P25039-02-NC [R]. Adelanto: KARCO Engineering, LLC, 2005.

    [26]

    SUN W, FAN W, YANG C, et al. Lessons learned from vehicle collision accident of Dongguofenli Bridge: FE modeling and analysis [J]. Engineering Structures, 2021, 244: 112813. doi: 10.1016/j.engstruct.2021.112813

    [27]

    BUTH C E, BRACKIN M S, WILLIAMS W F, et al. Collision loads on bridge piers: phase 2, Report of guidelines for designing bridge piers and abutments for vehicle collisions [R]. Texas: Texas Transportation Institute Proving Ground, 2011.

    [28]

    AASHTO. AASHTO LRFD Bridge Design Specifications, Eighth Edition [S]. Washington, DC: American Association of State Highway and Transportation Officials, 2017.

    [29]

    ABDELKARIM O I, ELGAWADY M A. Performance of bridge piers under vehicle collision [J]. Engineering Structures, 2017, 140: 337 − 352. doi: 10.1016/j.engstruct.2017.02.054

    [30]

    HENG K, LI R, LI Z, et al. Dynamic responses of highway bridge subjected to heavy truck impact [J]. Engineering structures, 2021, 232: 111828. doi: 10.1016/j.engstruct.2020.111828

图(21)  /  表(3)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  101
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-04-07
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2023-09-05

目录

    /

    返回文章
    返回