液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计

贾科敏, 许成顺, 杜修力, 张小玲, 崔春义

贾科敏, 许成顺, 杜修力, 张小玲, 崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计[J]. 工程力学, 2023, 40(7): 121-136. DOI: 10.6052/j.issn.1000-4750.2021.11.0922
引用本文: 贾科敏, 许成顺, 杜修力, 张小玲, 崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计[J]. 工程力学, 2023, 40(7): 121-136. DOI: 10.6052/j.issn.1000-4750.2021.11.0922
JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, CUI Chun-yi. EXPERIMENTAL DESIGN OF SHAKING TABLE TESTS FOR SEISMIC FAILURE RESPONSE OF PILE-GROUP-SUPERSTRUCTURE SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING[J]. Engineering Mechanics, 2023, 40(7): 121-136. DOI: 10.6052/j.issn.1000-4750.2021.11.0922
Citation: JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, CUI Chun-yi. EXPERIMENTAL DESIGN OF SHAKING TABLE TESTS FOR SEISMIC FAILURE RESPONSE OF PILE-GROUP-SUPERSTRUCTURE SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING[J]. Engineering Mechanics, 2023, 40(7): 121-136. DOI: 10.6052/j.issn.1000-4750.2021.11.0922

液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计

基金项目: 国家自然科学基金面上项目(52078016);国家自然科学基金优秀青年基金项目(51722801)
详细信息
    作者简介:

    贾科敏(1993−),男,河南人,博士生,主要从事饱和砂土液化与桩基础抗震领域的研究(E-mail: jiakemin6@163.com)

    杜修力(1962−),男,四川人,教授,博士,中国工程院院士,主要从事地震工程学研究(E-mail: duxiuli@bjut.edu.cn)

    张小玲(1980−),女,山西人,教授,博士,博导,主要从事土动力学方面的研究(E-mail: zhangxiaoling31@163.com)

    崔春义(1978−),男,辽宁人,教授,博士,博导,主要从事岩土地震工程与土动力方面研究(E-mail: cuichunyi@dlmu.edu.cn)

    通讯作者:

    许成顺(1977−),女,黑龙江人,教授,博士,博导,主要从事岩土力学基础理论与试验研究(E-mail: xuchengshun@bjut.edu.cn)

  • 中图分类号: TU435

EXPERIMENTAL DESIGN OF SHAKING TABLE TESTS FOR SEISMIC FAILURE RESPONSE OF PILE-GROUP-SUPERSTRUCTURE SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING

  • 摘要: 为系统研究液化侧向扩展场地钢筋混凝土群桩基础-上部桥梁结构的地震破坏机理,依托中国建筑科学研究院抗震实验室地震模拟振动台系统,开展了液化侧向扩展场地-桩基础-结构体系大型振动台系列试验。根据试验的研究目标,首先对系列试验的总体设计进行介绍,详细阐述了场地的制备与结构的设计和制作、各类传感器的布设及新型传感器的应用、地震动选取与工况安排等内容。利用试验数据对层状剪切箱的边界效应做简要分析,对阵列式位移计(SAA)直接测试液化土体侧向位移的结果进行评估。结果表明:模型箱边界效应不显著,SAA可有效测量可液化土体的侧向位移,为系列试验的对比分析奠定了基础。试验最终实现了液化诱导侧向大变形与桩基塑性破坏的宏观效果,达到预期目标,说明该次系列试验方法及其方案是合理的。该文试验技术与方案为今后同行开展类似试验提供一套系统、完备的方法。
    Abstract: To study the failure mechanism of pile-group-superstructures subjected to liquefaction-induced lateral spreading, large-scale shaking table tests were conducted employing the large-scale geotechnical shake table facility at the State Key Laboratory of Building Safety and Environment, China Academy of Building Research. For this purpose, the overall design of a series of experiments is introduced. The sample preparation and structure design, the layout of various sensors, the application of new sensors, the selection of ground motions and the input sequence arrangement are described in detail. Based on the experimental data, the boundary effect of the laminar shear box is analyzed. The lateral soil displacements directly measured by the shape acceleration array (SAA) are evaluated. The results show that the boundary effect of the laminar shear box is insignificant, and SAA can effectively measure lateral soil displacements. These provide support for the comparative analysis of the series of experiments. Finally, the macroscopic phenomena of large lateral deformation of soil and plastic failure of pile foundation are achieved and the expected goal is realized, which indicates that the series of experimental design are reasonable. The experimental designs provide a systematic and complete method for similar experiments in the future.
  • 图  1   典型钢筋混凝土桥桩-墩-上部结构体系

    Figure  1.   Typical pile group-pier-superstructure system

    图  2   试验场景设置

    Figure  2.   Overview of the four scenarios

    图  3   层状剪切箱与振动台台面实景图

    Figure  3.   Real view of box and shaking table

    图  4   试验用砂颗粒级配曲线

    Figure  4.   Grain distribution of sands

    图  5   土体称重与装样过程

    Figure  5.   Soil weighing and loading process

    图  6   桩-承台-墩的配筋图

    Figure  6.   Reinforcement of pile-cap-pier

    图  7   桩、墩截面的弯曲-曲率关系

    Figure  7.   Relationship between bending moment and curvature of pile and pier section

    图  8   桩、墩应变片布置状况 /cm

    Figure  8.   Arrangement of strain gauges for piles and piers

    9   系列试验中传感器布置状况 /cm

    9.   Sensor layout in series of tests

    图  10   薄膜压力传感器示意图

    Figure  10.   Schematic diagram of tactile pressure sheets

    图  11   土压力传感器布置示意图

    Figure  11.   Layout diagram of soil pressure sensor

    图  12   输入地震动

    Figure  12.   Input ground motion

    13   Tabas 0.05 g激励下相同埋深测点的加速度时程曲线与傅里叶谱对比状况

    13.   Comparison of acceleration time history and fourier spectrum at the same buried depth under Tabas 0.05 g

    14   Tabas 0.3 g地震动激励下相同埋深处测点的加速度时程曲线与傅里叶谱对比状况

    14.   Comparison of acceleration time history and fourier spectrum at the same buried depth under Tabas 0.3 g

    15   Tabas 0.05 g与Tabas 0.3 g地震动输入时孔压比反应

    15.   Pore pressure ratio under Tabas 0.05 g and Tabas 0.3 g

    图  16   不同地震输入时土的加速度反应谱(5%阻尼)

    Figure  16.   Acceleration response spectrum (5% damping) of soil under ground motion amplitude

    图  17   Tabas 0.3 g地震动激励时模型箱测点与SAA测点在相同高度的位移时程

    Figure  17.   Displacement time history of box and SAA at the same depths during Tabas 0.3 g

    图  18   试验前后CLSS场景的剪切箱变形宏观状况

    Figure  18.   Macro phenomena of shear box deformation in CLSS scenario before and after the test

    图  19   场景CLSS震后桩基的破坏现象

    Figure  19.   Failure phenomena of pile after earthquake in CLSS

    表  1   饱和砂土物理参数

    Table  1   Physical parameters of the saturated sand

    材料最大干
    密度/
    (g/cm3)
    最小干
    密度/
    (g/cm3)
    不均匀
    系数Cu
    曲率
    系数Cc
    比重
    Gs
    最大
    孔隙
    emax
    最小
    孔隙
    emin
    相对密
    实度/(%)
    饱和砂土1.7401.4632.861.382.660.8180.52947
    下载: 导出CSV

    表  2   钢筋拉伸试验测试结果

    Table  2   Mechanical properties of steel reinforcements from tension tests

    钢筋屈服强度
    fy/MPa
    弹性模量
    Es/GPa
    极限强度
    fsu/MPa
    极限应变
    ɛsu
    10 mm纵筋4642206270.11
    6 mm纵筋4262385830.13
    6 mm箍筋2212013500.16
    2.5 mm箍筋2341853360.18
    下载: 导出CSV

    表  3   试验加载工况

    Table  3   Load cases in the tests

    试验组序列输入地
    震动
    峰值地面
    加速度PGA/g
    时间/s时间
    间隔/min
    Arias强度/
    (m/s)
    CLSS
    RS
    CLS
    LSS
    1白噪声0.0560
    2Tabas0.0540300.162
    3Kobe0.0540300.182
    4Tabas0.3040301.460
    5白噪声0.0560
    6白噪声0.056060
    7Tabas0.5040304.050
    8白噪声0.056060
    9Tabas0.80403010.370
    10白噪声0.056060
    下载: 导出CSV
  • [1] 许成顺, 贾科敏, 杜修力, 等. 液化侧向扩展场地-桩基础抗震研究综述[J]. 防灾减灾工程学报, 2021, 41(4): 768 − 791.

    XU Chengshun, JIA Kemin, DU Xiuli, et al. Review on seismic behavior of pile foundation subjected to liquefaction induced lateral spreading [J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(4): 768 − 791. (in Chinese)

    [2]

    WERNER S, MCCULLOUGH N, BRUIN W, et al. Seismic performance of Port de Port-au-Prince during the Haiti earthquake and post-earthquake restoration of cargo throughput [J]. Earthquake Spectra, 2011, 27(Suppl 1): 387 − S410.

    [3]

    BRUNET S, DE LA LLERA J C, JACOBSEN A, et al. Performance of port facilities in Southern Chile during the 27 February 2010 Maule earthquake [J]. Earthquake Spectra, 2012, 28 (Suppl 1): 553 − 579.

    [4]

    VERDUGO R, GONZÁLEZ J. Liquefaction-induced ground damages during the 2010 Chile earthquake [J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 280 − 295. doi: 10.1016/j.soildyn.2015.04.016

    [5]

    ATHANASOPOULOS G A, KECHAGIAS G C, ZEKKOS D, et al. Lateral spreading of ports in the 2014 Cephalonia, Greece, earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105874. doi: 10.1016/j.soildyn.2019.105874

    [6]

    CUBRINOVSKI M, BRAY J D, DE LA TORRE C, et al. Liquefaction effects and associated damages observed at the Wellington CentrePort from the 2016 Kaikoura earthquake [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50(2): 152 − 173. doi: 10.5459/bnzsee.50.2.152-173

    [7]

    YUAN J, WANG Y, ZHAN B, et al. Comprehensive investigation and analysis of liquefaction damage caused by the Ms7.4 Maduo earthquake in 2021 on the Tibetan Plateau, China [J]. Soil Dynamics and Earthquake Engineering, 2022, 155: 107191. doi: 10.1016/j.soildyn.2022.107191

    [8]

    BRANDENBERG S J, BOULANGER R W, KUTTER B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378 − 1391. doi: 10.1061/(ASCE)1090-0241(2005)131:11(1378)

    [9]

    GONZÁLEZ L, ABDOUN T, DOBRY R. Effect of soil permeability on centrifuge modeling of pile response to lateral spreading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1): 62 − 73. doi: 10.1061/(ASCE)1090-0241(2009)135:1(62)

    [10]

    LIU X, WANG R, ZHANG J M. Centrifuge shaking table tests on 4× 4 pile groups in liquefiable ground [J]. Acta Geotechnica, 2018, 13(6): 1405 − 1418. doi: 10.1007/s11440-018-0699-5

    [11]

    LI X, TANG L, MAN X, et al. Liquefaction-induced lateral load on pile group of wharf system in a sloping stratum: A centrifuge shake-table investigation [J]. Ocean Engineering, 2021, 242: 110119. doi: 10.1016/j.oceaneng.2021.110119

    [12] 李雨润, 闫志晓, 张健, 等. 饱和砂土中直群桩动力响应离心机振动台试验与简化数值模型研究[J]. 岩石力学与工程学报, 2020, 39(6): 1252 − 1264.

    LI Yurun, YAN Zhixiao, ZHANG Jian, et al. Centrifugal shaking table test and numerical simulation of dynamic responses of straight pile group in saturated sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1252 − 1264. (in Chinese)

    [13]

    THEVANAYAGAM S, KANAGALINGAM T, REINHORN A, et al. Laminar box system for 1-g physical modeling of liquefaction and lateral spreading [J]. Geotechnical Testing Journal, 2009, 32(5): 438 − 449.

    [14]

    MOTAMED R, SESOV V, TOWHATA I, et al. Experimental modeling of large pile groups in sloping ground subjected to liquefaction-induced lateral flow: 1-g shaking table tests [J]. Soils and foundations, 2010, 50(2): 261 − 279. doi: 10.3208/sandf.50.261

    [15]

    CHANG B J, HUTCHINSON T C. Experimental investigation of plastic demands in piles embedded in multi-layered liquefiable soils [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 146 − 156. doi: 10.1016/j.soildyn.2013.01.012

    [16]

    EBEIDO A, ELGAMAL A, TOKIMATSU K, et al. Pile and pile-group response to liquefaction-induced lateral spreading in four large-scale shake-table experiments [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019080. doi: 10.1061/(ASCE)GT.1943-5606.0002142

    [17]

    LIU C, TANG L, LING X, et al. Investigation of liquefaction-induced lateral load on pile group behind quay wall [J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 56 − 64. doi: 10.1016/j.soildyn.2017.08.016

    [18] 张鑫磊, 王志华, 许振巍, 等. 土体液化大位移条件下群桩动力反应振动台模型试验[J]. 工程力学, 2016, 33(5): 150 − 156. doi: 10.6052/j.issn.1000-4750.2014.09.0828

    ZHANG Xinlei, WANG Zhihua, XU Zhenwei, et al. Shaking table model tests on dynamic response of pile groups under liquefaction induced large ground displacement [J]. Engineering Mechanics, 2016, 33(5): 150 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.09.0828

    [19] 陈志雄, 李康银, 王成龙, 等. 液化侧向扩展场地刚性排水管桩群桩振动台试验研究[J]. 工程力学, 2022, 39(9): 141 − 152. doi: 10.6052/j.issn.1000-4750.2021.05.0374

    CHEN Zhixiong, LI Kangyin, WANG Chenglong, et al. Shaking table tests on rigid-drainage pipe pile groups at liquefied laterally spreading site [J]. Engineering Mechanics, 2022, 39(9): 141 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0374

    [20] 许成顺, 豆鹏飞, 杜修力, 等. 液化自由场地震响应大型振动台模型试验分析[J]. 岩土力学, 2019, 40(10): 3767 − 3777.

    XU Chengshun, DOU Pengfei, DU Xiuli, et al. Large-scale shaking table model test of liquefiable free field [J]. Rock and Soil Mechanics, 2019, 40(10): 3767 − 3777. (in Chinese)

    [21] 许成顺, 豆鹏飞, 杜修力, 等. 液化场地–群桩基础–结构体系动力响应分析——大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173 − 2181.

    XU Chengshun, DOU Pengfei, DU Xiuli, et al. Dynamic response analysis of liquefied site-pile group foundation-structure system-large-scale shaking table model test [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173 − 2181. (in Chinese)

    [22]

    XU C, DOU P, DU X, et al. Large shaking table tests of pile supported structures in different ground conditions [J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106307. doi: 10.1016/j.soildyn.2020.106307

    [23]

    XU C, DOU P, DU X, et al. Seismic performance of pile group structure system in liquefiable and non-liquefiable soil from large-scale shake table tests [J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106299. doi: 10.1016/j.soildyn.2020.106299

    [24] 唐亮, 凌贤长, 徐鹏举, 等. 可液化场地桥梁群桩基础地震响应振动台试验研究[J]. 岩土工程学报, 2010, 32(5): 672 − 680.

    TANG Liang, LING Xianzhang, XU Pengju, et al. Shaking table test on seismic response of pile groups of bridges in liquefiable ground [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 672 − 680. (in Chinese)

    [25] 冯忠居, 张聪, 何静斌, 等. 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21(4): 72 − 83.

    FENG Zhongju, ZHANG Chong, HE Jingbin, et al. Shaking table test of liquefaction resistance of group piles under strong earthquake [J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 72 − 83. (in Chinese)

    [26] 戴启权, 钱德玲, 张泽涵, 等. 液化场地超高层建筑群桩基础动力响应试验研究[J]. 岩石力学与工程学报, 2015, 34(12): 2572 − 2579.

    DAI Qiquan, QIAN Deling, ZHANG Zehan, et al. Experimental research on dynamic response of pile group of super highrise building on liquefiable ground [J]. Journal of Rock Mechanics and Engineering, 2015, 34(12): 2572 − 2579. (in Chinese)

    [27] 焦驰宇, 刘文勃, 桂晓珊, 等. 近断层地震下小半径曲线桥碰撞响应的振动台试验研究[J]. 工程力学, 2020, 37(8): 189 − 201. doi: 10.6052/j.issn.1000-4750.2020.01.0035

    JIAO Chiyu, LIU Wenbo, GUI Xiaoshan, et al. Shaking table tests of the seismic pounding effect on a small radius curved bridge under near-fault ground motions [J]. Engineering Mechanics, 2020, 37(8): 189 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0035

    [28] 邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152 − 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559

    ZOU Youxue, WANG Rui, ZHANG Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Mechanics, 2019, 36(10): 152 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559

    [29]

    CHIOU J S, HUANG T J, CHEN C L, et al. Shaking table testing of two single piles of different stiffnesses subjected to liquefaction-induced lateral spreading [J]. Engineering Geology, 2021, 281: 105956. doi: 10.1016/j.enggeo.2020.105956

    [30]

    HUSSEIN A F, EL NAGGAR M H. Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils [J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106853. doi: 10.1016/j.soildyn.2021.106853

    [31]

    WANG R, LIU X, ZHANG J M. Numerical analysis of the seismic inertial and kinematic effects on pile bending moment in liquefiable soils [J]. Acta Geotechnica, 2017, 12(4): 773 − 791. doi: 10.1007/s11440-016-0487-z

    [32]

    ISHIHARA K. Liquefaction and flow failure during earthquakes [J]. Géotechnique, 1993, 43(3): 351 − 451.

    [33] 陈维超, 杨伟军. 水泥改良砂土无侧限抗压强度试验研究[J]. 中外公路, 2019, 39(6): 188 − 196.

    CHEN Weichao, YANG Weijun. Experimental study on unconfined compressive strength of cement modified sand [J]. Journal of China & Foreign Highway, 2019, 39(6): 188 − 196. (in Chinese)

    [34]

    TANG L, LING X. Response of a RC pile group in liquefiable soil: a shake-table investigation [J]. Soil Dynamics and Earthquake Engineering, 2014, 67: 301 − 315. doi: 10.1016/j.soildyn.2014.10.015

    [35]

    WANG X, YE A, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils [J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217 − 1237.

    [36] 杨政, 廖红建, 楼康禺. 微粒混凝土受压应力应变全曲线试验研究[J]. 工程力学, 2002, 19(2): 90 − 94.

    YANG Zheng, LIAO Jianhong, LOU Kangyu. Experimental study of the full curve of the stress-strain relationship for microconcrete. [J]. Engineering Mechanics, 2002, 19(2): 90 − 94. (in Chinese)

    [37]

    MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of structural engineering, 1988, 114(8): 1804 − 1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)

    [38]

    FILIPPOU F C, POPOV E P, BERTERO V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints [R]. Berkeley, CA: Earthquake Engineering Research Center, 1983.

    [39] 陈跃庆, 黄炜, 吕西林. 结构-地基动力相互作用体系的振动台模型试验设计[J]. 结构工程师, 1999(增刊): 243 − 248.

    CHEN Yueqing, HUANG Wei, LYU Xilin. Design on shaking table testing of dynamic soil-structure interaction system [J]. Structural Engineers, 1999(Suppl): 243 − 248. (in Chinese)

    [40] 刘开源, 许成顺, 贾科敏, 等. 薄膜压力传感器(FSR)曲面土压力测量研究[J]. 岩土工程学报, 2020, 42(3): 584 − 591.

    LIU Kaiyuan, XU Chengshun, JIA Kemin, et al. Measurement of earth pressures on curved surface of thin film pressure sensor [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 584 − 591. (in Chinese)

    [41] 陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89 − 97.

    CHEN Guoxing, WANG Zhihua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89 − 97. (in Chinese)

    [42] 陈苏, 陈国兴, 韩晓健, 等. 基于最优圆拟合原理的非接触性动态位移测试方法及可视化软件的研发[J]. 岩土工程学报, 2013, 35(增刊 2): 369 − 374.

    CHEN Su, CHEN Guoxing, HAN Xiaojian, et al. Non-contact displacement test based on optimal circle fitting method and development of visual software [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 369 − 374. (in Chinese)

图(23)  /  表(3)
计量
  • 文章访问数:  586
  • HTML全文浏览量:  178
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-04-09
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2023-07-24

目录

    /

    返回文章
    返回