地震-风耦合作用下钢框架-自复位支撑筒结构性能研究

徐龙河, 刘媛媛, 谢行思

徐龙河, 刘媛媛, 谢行思. 地震-风耦合作用下钢框架-自复位支撑筒结构性能研究[J]. 工程力学, 2022, 39(11): 186-195. DOI: 10.6052/j.issn.1000-4750.2021.07.0517
引用本文: 徐龙河, 刘媛媛, 谢行思. 地震-风耦合作用下钢框架-自复位支撑筒结构性能研究[J]. 工程力学, 2022, 39(11): 186-195. DOI: 10.6052/j.issn.1000-4750.2021.07.0517
XU Long-he, LIU Yuan-yuan, XIE Xing-si. PERFORMANCE STUDY OF STEEL FRAME SELF-CENTERING BRACED TUBE STRUCTURE UNDER COUPLING ACTION OF EARTHQUAKE AND WIND[J]. Engineering Mechanics, 2022, 39(11): 186-195. DOI: 10.6052/j.issn.1000-4750.2021.07.0517
Citation: XU Long-he, LIU Yuan-yuan, XIE Xing-si. PERFORMANCE STUDY OF STEEL FRAME SELF-CENTERING BRACED TUBE STRUCTURE UNDER COUPLING ACTION OF EARTHQUAKE AND WIND[J]. Engineering Mechanics, 2022, 39(11): 186-195. DOI: 10.6052/j.issn.1000-4750.2021.07.0517

地震-风耦合作用下钢框架-自复位支撑筒结构性能研究

基金项目: 国家自然科学基金项目(52078036,52125804)
详细信息
    作者简介:

    刘媛媛(1998−),女,四川人,硕士生,主要从事结构抗震研究(E-mail: 19121075@bjtu.edu.cn)

    谢行思(1992−),男,河北人,博士后,主要从事结构抗震研究(E-mail: 98930237@bjtu.edu.cn)

    通讯作者:

    徐龙河(1976−),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail: lhxu@bjtu.edu.cn)

  • 中图分类号: TU355

PERFORMANCE STUDY OF STEEL FRAME SELF-CENTERING BRACED TUBE STRUCTURE UNDER COUPLING ACTION OF EARTHQUAKE AND WIND

  • 摘要: 基于自回归模型分别模拟重现期为1年、10年和50年下不同高度处的风荷载时程,并与不同峰值加速度的地震动记录进行组合,对一布置预压碟簧自复位耗能(PS-SCED)支撑的50层钢框架-自复位支撑筒结构在地震-风耦合作用下的性能进行研究。结果表明:在地震-风耦合作用下,风荷载强度的增大对结构层间位移角的增大效果并不显著,结构层间位移角主要由地震动强度控制;风荷载强度越大,结构层间变形集中程度越小;地震动强度越小,风荷载对结构基底剪力影响越显著;地震动强度越大,地震-风耦合作用下结构各层加速度放大系数与地震单独作用下的结果差异越显著;PS-SCED支撑在地震-风耦合作用下能充分发挥耗能能力,有效保护主体结构,其良好的自复位特性能有效减小结构的残余变形。
    Abstract: Based on an auto-regressive model, the wind load time histories at different heights with return periods of one year, ten years and fifty years are simulated respectively and combined with earthquakes with different peak ground accelerations to study the performance of a 50-storey steel frame braced tube structure with pre-pressed spring self-centering energy dissipation (PS-SCED) braces. The results indicate that under the coupling action of earthquake and wind, the increase of wind load intensity has no significant effect on the interstorey drift ratio which is mainly influenced by earthquake intensity. As wind load intensity increases, the structural interstorey drift concentration factor decreases. As earthquake intensity decreases, wind load influences the structural base shear force more significantly. The difference between structural acceleration amplification coefficients under the coupling action of earthquake and wind and those solely under the earthquake is more significant with the increase of earthquake intensity. The PS-SCED braces dissipate energy sufficiently subjected to the coupling action of earthquake and wind to protect structure effectively, and the structural residual deformation is reduced obviously due to their excellent self-centering behavior.
  • 图  1   钢框架-PS-SCED支撑筒结构平面图

    Figure  1.   Plan view of steel frame-PS-SCED braced tube structure

    图  2   PS-SCED支撑构造及滞回曲线

    Figure  2.   Configuration and hysteretic curve of PS-SCED brace

    图  3   钢框架-PS-SCED支撑筒结构数值模型

    Figure  3.   Numerical model of steel frame-PS-SCED braced tube structure

    图  4   两作用点处的模拟脉动风速时程曲线

    Figure  4.   Simulated fluctuating wind speed time history curves of two loading points

    图  5   两作用点处的模拟脉动风速谱与目标谱对比

    Figure  5.   Comparisons between simulated fluctuating wind speed spectra and target spectra of two loading points

    图  6   地震动记录加速度反应谱

    Figure  6.   Acceleration spectra of earthquake records

    图  7   结构最大层间位移角均值

    Figure  7.   Average values of structural maximum interstorey drift ratios

    图  8   GM2地震动分别耦合1年和50年重现期风荷载作用下PS-SCED支撑滞回曲线

    Figure  8.   Hysteretic curves of PS-SCED braces under GM2 earthquake coupled wind loadings with return periods of 1 year and 50 years respectively

    图  9   结构耗能分配及PS-SCED支撑耗能占比

    Figure  9.   Distribution of structural energy dissipation and the energy dissipation proportions of PS-SCED braces

    图  10   结构最大残余变形角均值

    Figure  10.   Average values of structural maximum residual deformation ratios

    图  11   PS-SCED支撑筒承担剪力占比

    Figure  11.   Proportions of shear force borne by PS-SCED braced tube

    图  12   结构加速度放大系数均值

    Figure  12.   Average values of structural acceleration amplification coefficients

    表  1   梁截面信息

    Table  1   Cross-sectional information of beams

    层号①类/mm②类/mm③类/mm④类/mm⑤类/mm次梁/mm
    1~19 HN850×300 HN800×300 HN750×300 HN700×300 HN500×200 HN400×150
    20~30 HN700×300 HN700×300 HN700×300 HN700×300 HN500×200 HN400×150
    31~50 HN638×202 HN638×202 HN638×202 HN638×202 HN500×200 HN400×150
    下载: 导出CSV

    表  2   柱截面信息

    Table  2   Cross-sectional information of columns

    层号支撑筒角柱/mm支撑筒边柱/mm支撑筒内柱/mm外框架柱/mm
    1~10□1090×1090×100×100□660×660×38×38□630×630×28×28□890×890×69×69
    11~19□905×905×78×78□630×630×28×28□630×630×28×28□790×790×47×47
    20□890×890×69×69□630×630×28×28□630×630×28×28□790×790×47×47
    21~30□790×790×47×47□630×630×28×28□575×575×24×24□660×660×38×38
    31~40□660×660×38×38□575×575×24×24□420×420×16×16□630×630×28×28
    41~50□630×630×28×28□575×575×24×24□420×420×16×16□575×575×24×24
    下载: 导出CSV

    表  3   PS-SCED支撑设计参数

    Table  3   Design parameters of PS-SCED braces

    层号预压力/kN摩擦力/kN第一刚度K1/
    (kN/mm)
    第二刚度K2/
    (kN/mm)
    12770.82770.8869.318.6
    2~102770.82770.8893.019.1
    11~202558.32558.3824.517.7
    21~302381.32381.3767.516.4
    31~401424.41424.4459.19.8
    41~501179.21179.2380.08.1
    下载: 导出CSV

    表  4   地震动记录信息

    Table  4   Information of the earthquake records

    序号事件年份/年站台震级震中距/km场地类型
    GM1Borrego1942El Centro Array #96.5056.88硬土
    GM2Kern County1952LA-Hollywood Stor FF7.36114.62硬土
    GM3Kern County1952Pasadena-CIT Athenaeum7.36122.65软岩
    GM4Hollister-011961Hollister City Hall5.6019.55硬土
    GM5Parkfield1966Cholame-Shandon Array #126.1917.64软岩
    GM6San Fernando1971Carbon Canyon Dam6.6161.79硬土
    GM7San Fernando1971Gormon-Oso Pump Plant6.6143.95硬土
    下载: 导出CSV

    表  5   结构层间变形集中系数均值

    Table  5   Average values of structural interstorey drift concentration factor

    地震动强度风荷载强度
    R1R10R50
    小震 2.27 1.87 1.73
    中震 2.54 2.25 2.09
    大震 2.36 2.18 2.10
    巨震 2.32 2.15 2.08
    下载: 导出CSV

    表  6   结构最大基底剪力均值

    Table  6   Average values of structural maximum base shear force /kN

    地震动强度风荷载强度
    R1R10R50
    小震 11 604.3 14 199.7 16 115.5
    中震 23 614.7 24 991.4 25 875.0
    大震 31 020.0 32 724.9 34 462.7
    巨震 38 512.0 39 701.3 41 220.4
    下载: 导出CSV
  • [1]

    ZHANG Y F, ZHU S Y. Seismic response control of building structures with superelastic shape memory alloy wire dampers [J]. Journal of Engineering Mechanics, 2008, 134(3): 240 − 251. doi: 10.1061/(ASCE)0733-9399(2008)134:3(240)

    [2] 刘璐, 吴斌. 自复位防屈曲支撑钢框架减振效果分析[J]. 建筑结构学报, 2016, 37(4): 93 − 101.

    LIU Lu, WU Bin. Seismic response of steel frames with self-centering buckling-restrained braces [J]. Journal of Building Structures, 2016, 37(4): 93 − 101. (in Chinese)

    [3] 刘璐, 吴斌, 李伟, 等. 自复位防屈曲支撑结构动力位移反应的关键参数[J]. 工程力学, 2016, 33(1): 188 − 194. doi: 10.6052/j.issn.1000-4750.2014.11.0981

    LIU Lu, WU Bin, LI Wei, et al. Key parameters of structure with self-centering buckling-restrained braces for seismic analysis [J]. Engineering Mechanics, 2016, 33(1): 188 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.0981

    [4] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10): 116 − 122. doi: 10.6052/j.issn.1000-4750.2015.03.0216

    XU Longhe, FAN Xiaowei, LU Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation brace [J]. Engineering Mechanics, 2016, 33(10): 116 − 122. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0216

    [5]

    XU L H, FAN X W, LI Z X. Hysteretic analysis model for pre-pressed spring self-centering energy dissipation braces [J]. Journal of Structural Engineering, 2018, 144(7): 04018037.

    [6] 徐龙河, 孙雨生, 要世乾, 等. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119 − 127, 146. doi: 10.6052/j.issn.1000-4750.2018.04.0249

    XU Longhe, SUN Yusheng, YAO Shiqian, et al. Restoring force model and experimental verification of an assembled self-centering energy dissipation brace [J]. Engineering Mechanics, 2019, 36(6): 119 − 127, 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0249

    [7] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90 − 97. doi: 10.6052/j.issn.1000-4750.2019.01.0100

    XU Longhe, ZHANG Ge, YAN Xintong. Seismic performance study of reinforced concrete frame with self-centering braces [J]. Engineering Mechanics, 2020, 37(2): 90 − 97. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0100

    [8] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141 − 148. doi: 10.6052/j.issn.1000-4750.2018.07.0406

    XU Longhe, YANG Xuefei. Direct displacement-based brace parameters design and analyses of steel frame with self-centering braces [J]. Engineering Mechanics, 2019, 36(8): 141 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0406

    [9] 刘杨, 李宏男, 李超, 等. 风与地震耦合作用下钢管混凝土框架-防屈曲支撑结构体系易损性研究[J]. 土木工程学报, 2019, 52(2): 60 − 69.

    LIU Yang, LI Hongnan, LI Chao, et al. The study on the vulnerability of the concrete stilled steel tubular frame with buckling-restrained braces structure under the coupling of wind and earthquake [J]. China Civil Engineering Journal, 2019, 52(2): 60 − 69. (in Chinese)

    [10]

    ZHENG X W, LI H N, YANG Y B, et al. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data [J]. Engineering Structures, 2019, 200: 109697. doi: 10.1016/j.engstruct.2019.109697

    [11] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2016.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)

    [12]

    IANNUZZI A, SPINELLI P. Artificial wind generation and structural response [J]. Journal of Structural Engineering, 1987, 113(12): 2382 − 2398. doi: 10.1061/(ASCE)0733-9445(1987)113:12(2382)

    [13] 王卫华. 结构风荷载理论与Matlab计算 [M]. 北京: 国防工业出版社, 2018.

    WANG Weihua. Theory and calculation of wind loads on structures [M]. Beijing: National Defense Industry Press, 2018. (in Chinese)

    [14] GB 50009−2012, 建筑结构荷载规范 [S]. 北京: 中国建筑工业出版社, 2012.

    GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

    [15]

    XU L H, XIE X S, LI Z X. Seismic behavior and design approach of variable-damping self-centering braced frame [J]. Journal of Structural Engineering, 2021, 147(6): 05021001.

  • 期刊类型引用(9)

    1. 赵鑫,黄双超,杨吉忠,Zhen YANG,温泽峰. 更高速下轮轨瞬态“滚-滑-跳”接触行为及中/短波不平顺临界限值研究. 铁道学报. 2024(10): 21-32 . 百度学术
    2. 赵长雨,赵鑫,王鹏,沈正行,温泽峰. 考虑研磨子——车轮和轮轨作用的城际动车组车轮磨耗预测. 工程力学. 2023(01): 229-237 . 本站查看
    3. 沈正行,赵鑫,王平,刘顺稳,温泽峰. 波磨激励下的地铁钢轨滚动接触疲劳裂纹瞬态扩展行为. 铁道科学与工程学报. 2023(12): 4552-4561 . 百度学术
    4. 王志强,雷震宇. 地铁小半径曲线钢弹簧浮置板轨道钢轨波磨成因分析. 中国机械工程. 2023(24): 2899-2908 . 百度学术
    5. 黎嘉欣,陶功权,刘希政,梁红琴,温泽峰. 基于两种轨道线路建模方法的地铁车轮磨耗预测对比分析. 工程力学. 2022(06): 226-235 . 本站查看
    6. 罗易飞,赵鑫,周志军,尹利钧,温泽峰,杨吉忠. 缩尺车轮-环轨试验台轮轨静态接触相似性研究. 中南大学学报(自然科学版). 2022(10): 3901-3911 . 百度学术
    7. 黄双超,赵鑫,张笃超,许黎明,温泽峰,金学松. 高阶多边形车轮的瞬态磨耗行为分析. 中南大学学报(自然科学版). 2021(02): 648-658 . 百度学术
    8. 朱海燕,袁遥,肖乾,黎洁,郑宇轩. 钢轨波磨研究进展. 交通运输工程学报. 2021(03): 110-133 . 百度学术
    9. 周墨臻,张丙印,张顶立,方黄城. 基于三场变分原理的对偶mortar有限元法. 工程力学. 2020(06): 51-59 . 本站查看

    其他类型引用(8)

图(12)  /  表(6)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  134
  • PDF下载量:  95
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-09-13
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回