大口径模块化空间可展天线支承结构撞击动力响应研究

金路, 钱晶晶, 田大可

金路, 钱晶晶, 田大可. 大口径模块化空间可展天线支承结构撞击动力响应研究[J]. 工程力学, 2022, 39(S): 342-349. DOI: 10.6052/j.issn.1000-4750.2021.06.S045
引用本文: 金路, 钱晶晶, 田大可. 大口径模块化空间可展天线支承结构撞击动力响应研究[J]. 工程力学, 2022, 39(S): 342-349. DOI: 10.6052/j.issn.1000-4750.2021.06.S045
JIN Lu, QIAN Jing-jing, TIAN Da-ke. STUDY ON IMPACT DYNAMIC RESPONSE OF LARGE APERTURE MODULAR SPACE DEPLOYABLE ANTENNA SUPPORT STRUCTURE[J]. Engineering Mechanics, 2022, 39(S): 342-349. DOI: 10.6052/j.issn.1000-4750.2021.06.S045
Citation: JIN Lu, QIAN Jing-jing, TIAN Da-ke. STUDY ON IMPACT DYNAMIC RESPONSE OF LARGE APERTURE MODULAR SPACE DEPLOYABLE ANTENNA SUPPORT STRUCTURE[J]. Engineering Mechanics, 2022, 39(S): 342-349. DOI: 10.6052/j.issn.1000-4750.2021.06.S045

大口径模块化空间可展天线支承结构撞击动力响应研究

基金项目: 辽宁省教育厅科学研究面上项目(LJKZ0563);中国博士后科学基金面上项目(2019M661126);国家自然科学基金重点项目(51835002)
详细信息
    作者简介:

    金 路(1982−),女,辽宁人,副教授,博士,主要从事高层与轻型钢结构、空间结构方面研究(E-mail: jinlu@sjzu.edu.cn)

    钱晶晶(1995−),女,湖北人,硕士生,主要从事结构工程研究(E-mail: qjingjing163@163.com)

    通讯作者:

    田大可(1981−),男,辽宁人,副教授,博士,主要从事空间可展开天线方面研究(E-mail: tiandake@sjzu.edu.cn)

  • 中图分类号: V414

STUDY ON IMPACT DYNAMIC RESPONSE OF LARGE APERTURE MODULAR SPACE DEPLOYABLE ANTENNA SUPPORT STRUCTURE

  • 摘要: 空间可展天线在轨运行时可能会受到空间碎片的高速撞击,为研究天线支承结构受高速撞击时的动力响应特性,采用ANSYS/LS-DYNA有限元软件,建立了大口径模块化空间可展天线支承结构撞击动力模型。基于已有网壳结构的高速撞击试验,验证撞击模型的有效性。经与显式动力模型计算结果对比验证,提出了一种有效的撞击动力分析等效模型,分析了不同撞击位置和不同撞击速度参数对天线支承结构的撞击动态响应、破坏模式及关键杆件和整体结构变形性能的影响。结果表明:撞击点越靠近结构形心,撞击影响区域越大;高速撞击时破坏模式均为撞击区域小局部凹陷或击穿,结构整体稳定性较好;天线结构的最大变形通常发生在撞击点处,最不利撞击点为离约束最远端结构边缘,应对该处采取安全防护措施;随着撞击速度由高速增至超高速,撞击点处结构整体变形增大,但撞击响应区域呈先增大后减小趋势;撞击速度20 km/s时被撞击杆件快速发生冲剪破坏,整体结构变形区域最小。
    Abstract: Space deployable antennas may be impacted by high-speed space debris. To study the dynamic response of antenna support structure under high-speed impact, a dynamic impact model of large aperture modular space deployable antenna support structure is established by using ANSYS/LS-DYNA. Based on the high-speed impact test on the spherical reticulated shell structure, the validity of the structural impact dynamic model is verified. An effective equivalent model of impact dynamic analysis is proposed by comparing the calculation results with the dynamic model, and the effects of different impact locations and velocities on the dynamic response, failure mode and deformation behavior of key members and the whole structure are analyzed. The results show that a closer impact point to the structure centroid leads to a larger impact area. Small local depression or breakdown occurs in the impact area, and the overall stability of the structure is good. The maximum deformation of antenna structure usually occurs at the impact point, and the most adverse impact point is the farthest from the constraint, where the safety measures should be taken. As the impact velocity increases from high speed to ultra-high speed, the overall deformation of the support structure increases at the impact point, but the impact response region increases initially and then decreases. When the impact velocity is 20 km/s, the rod suffers shear failure rapidly and the deformation area of the whole structure is minimum.
  • 图  1   六边形单模块

    Figure  1.   Hexagonal single module

    图  2   四层模块拓扑图

    Figure  2.   Four-layer module topology view

    图  3   平面模块的空间球面投影

    Figure  3.   Spatial spherical projection of plane module

    图  4   结构有限元模型

    Figure  4.   Finite element model of support structure

    图  5   试验工况1-1

    Figure  5.   Test condition 1-1

    图  6   球面网壳结构试验模型

    Figure  6.   Experiment model of spherical reticulated shell

    图  7   球面网壳结构有限元模型

    Figure  7.   Finite element model of spherical reticulated shell

    图  8   试验工况1-1节点变形

    Figure  8.   Deformations of joint in test condition 1-1

    图  9   有限元模拟整体变形

    Figure  9.   Global deformation of finite element simulation

    图  10   三角形脉冲荷载

    Figure  10.   Triangular impulse load

    图  11   支承结构变形云图

    Figure  11.   Deformations of support structure

    图  12   两种不同模型下结构变形对比图

    Figure  12.   Comparison of structural deformation under two different models

    图  13   不同撞击位置支承结构变形图

    Figure  13.   Deformations of support structure at different impact positions

    图  14   不同撞击速度下支承结构变形图

    Figure  14.   Deformations of support structure at different impact velocities

    表  1   杆件尺寸及数量

    Table  1   Size and number of rods

    构件名称外径/mm壁厚/mm数量/根
    环杆141.090
    主肋141.030
    斜杆100.8120
    下载: 导出CSV

    表  2   两种模型计算结果对比

    Table  2   Comparison of calculation results

    撞击速度/
    (km/s)
    撞击点变形/mm相邻杆平均变形/mm破坏模式
    显式等效显式等效
    0.19.428.817.0016.12结构整体
    凹陷
    0.215.4914.811.8312.00局部凹陷
    0.416.8816.814.8013.95局部凹陷
    0.615.4012.410.0010.25局部凹陷
    0.86.246.41.121.89杆件压断
    1.04.574.61.231.35杆件压断
    2.01.952.00.600.68节点击穿
    4.01.501.90.600.53节点击穿
    下载: 导出CSV

    表  3   不同撞击位置下结构最大位移

    Table  3   Maximum deformations at different impact positions

    撞击点位222811152652
    最大位移/mm23.046.102.792.78
    下载: 导出CSV

    表  4   不同撞击速度下结构最大位移

    Table  4   Maximum deformations of support structure at different impact velocities

    撞击速度/(km/s)5101520
    最大位移/mm6.1911.7517.3223.04
    下载: 导出CSV
  • [1] 田大可, 高海明, 金路, 等. 模块化空间折展机构研究现状与展望[J]. 中国空间科学技术, 2021, 41(4): 16 − 31.

    Tian Dake, Gao Haiming, Jin Lu, et al. Research status and prospect of modular space deployable and foldable mechanism [J]. Chinese Space Science and Technology, 2021, 41(4): 16 − 31. (in Chinese)

    [2] 丁毅, 沈薇, 李洁, 等. 卫星通信全代理同态可信传输机制研究[J]. 中国空间科学技术, 2020, 40(4): 84 − 96.

    Ding Yi, Shen Wei, Li Jie, et al. Research on trusted full proxy homomorphic transmission mechanism for satellite communication [J]. China Space Science and Technology, 2020, 40(4): 84 − 96. (in Chinese)

    [3]

    Wu J, Zhao Z H, Ren G X. Dynamic analysis of space structure deployment with transient thermal load [J]. Advanced Materials Research, 2012, 1673: 803 − 807.

    [4]

    Jin Lu, Qian Jingjing, Tian Dake, et al. Dynamic response analysis of large aperture space deployable antenna structure under impact load [C]// 2021 IEEE 4th International Conference on Electronics Technology (ICET). Chengdu, IEEE, 2021.

    [5]

    European Space Agency. ESA's annual space environment report [DB]. https://discosweb.esoc.esa.int/, 2021-01-05.

    [6] 汤靖师, 程昊文. 空间碎片问题的起源、现状和发展[J]. 物理, 2021, 50(5): 317 − 323. doi: 10.7693/wl20210505

    Tang Jingshi, Cheng Haowen. Origin, Status and development of space debris issues [J]. Physics, 2021, 50(5): 317 − 323. (in Chinese) doi: 10.7693/wl20210505

    [7]

    Liou J C. Highlights of 2018- 2019 NASA orbital debris research activities [R]. Rome: 37th IADC Meeting, 2019.

    [8]

    Roybal R, Tlomak P, Roybal R, et al. Hypervelocity space debris testing [C]// Defense & Space Programs Conference & Exhibit-critical Defense & Space Programs for the Future. New York, American, Institute of Aeronautics and Astronautics, 1997.

    [9]

    Mespoulet J, Héreil P L, Abdulhamid H, et al. Experimental study of hypervelocity impacts on space shields above 8 km/s [J]. Procedia Engineering, 2017, 204: 508 − 515. doi: 10.1016/j.proeng.2017.09.748

    [10] 税敏, 储根柏, 席涛, 等. 神光Ⅲ原型装置激光驱动高速飞片实验研究进展[J]. 物理学报, 2017, 66(6): 168 − 176.

    Shui Min, Chu Genbo, Xi Tao, et al. Research progress of laser driven high speed flyer in Shenguang iii prototype Device [J]. Acta Physica Sinica, 2017, 66(6): 168 − 176. (in Chinese)

    [11] 班晓娜, 杨为明, 张品亮, 等. 激光驱动靶丸超高速发射研究[J]. 原子能科学技术, 2021, 55(12): 2389 − 2395. doi: 10.7538/yzk.2020.youxian.0887

    Ban Xiaona, Yang Weiming, Zhang Pinliang, et al. Ultra-high speed launch of laster driven pellet [J]. Atomic Energy Science and Technology, 2021, 55(12): 2389 − 2395. (in Chinese) doi: 10.7538/yzk.2020.youxian.0887

    [12] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展[J]. 高压物理学报, 2019, 33(3): 164 − 196.

    Lin Jianyu, Luo Binqiang, Xu Mingyang, et al. Research progress of protective structures for hypervelocity impact of aluminum projectiles [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 164 − 196. (in Chinese)

    [13] 苗常青, 杜明俊, 黄磊. 空间碎片柔性防护结构超高速撞击试验研究[J]. 载人航天, 2017, 23(2): 173 − 176, 227. doi: 10.3969/j.issn.1674-5825.2017.02.006

    Miao Changqing, Du Mingjun, Huang Lei. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173 − 176, 227. (in Chinese) doi: 10.3969/j.issn.1674-5825.2017.02.006

    [14] 盖芳芳, 才源, 郝俊才, 等. 超高速撞击压力容器后壁损伤实验及建模研究[J]. 振动与冲击, 2015, 34(13): 12 − 17.

    Gai Fangfang, Cai Yuan, Hao Juncai, et al. Tests and modeling for damage of pressure vessels' rear wall caused by hypervelocity impact [J]. Journal of Vibration and Shock, 2015, 34(13): 12 − 17. (in Chinese)

    [15] 廖明云. 空间碎片对长寿命低轨遥感卫星的影响研究[J]. 国际太空, 2015(6): 55 − 58.

    Liao Mingyun. Space debris' effect on long sercive life LEO remote sensing satellites [J]. Space International, 2015(6): 55 − 58. (in Chinese)

    [16] 姜东升, 郑世贵, 马宁, 等. 空间碎片和微流星对卫星太阳翼的撞击损伤及防护研究[J]. 航天器工程, 2017, 26(2): 114 − 120. doi: 10.3969/j.issn.1673-8748.2017.02.016

    Jiang Dongsheng, Zheng Shigui, Ma Ning, et al. Study of space and meteoroid impact effects on spacecraft solar array [J]. Spacecraft Engineering, 2017, 26(2): 114 − 120. (in Chinese) doi: 10.3969/j.issn.1673-8748.2017.02.016

    [17] 田大可, 范小东, 金路, 等. 六棱柱模块化可展开天线形面精度分析[J]. 光学精密工程, 2021, 29(12): 2855 − 2867. doi: 10.37188/OPE.20212912.2855

    Tian Dake, Fan Xiaodong, Jin Lu, et al. Surface accuracy analysis for hexagonal prism modular deployable antenna [J]. Optics and Precision Engineering, 2021, 29(12): 2855 − 2867. (in Chinese) doi: 10.37188/OPE.20212912.2855

    [18] 范小东, 郑夕健, 田大可, 等. 模块化可展开天线支撑机构运动学建模与分析[J]. 中国空间科学技术, 2021, 41(5): 37 − 49.

    Fan Xiaodong, Zheng Xijian, Tian Dake, et al. Kinematic modeling and analysis of support mechanism for modular deployable antenna [J]. Chinese Space Science and Technology, 2021, 41(5): 37 − 49. (in Chinese)

    [19] 张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型[J]. 兵工学报, 2013, 34(3): 276 − 282.

    Zhang Wei, Wei Gang, Xiao Xinke. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276 − 282. (in Chinese)

    [20] 苟宝龙. 多点冲击荷载下考虑节点刚度影响的单层球面网壳结构失效机理研究[D]. 兰州: 兰州理工大学, 2019.

    Gou Baolong. Failure mechanism of single-layer reticulated domes under multi-point impact considering the influence of joint stiffness [D]. Lanzhou: Lanzhou University of Technology, 2019. (in Chinese)

    [21] 徐颖, 韩庆华, 练继建. 单层球面网壳抗连续倒塌性能研究[J]. 工程力学, 2016, 33(11): 105 − 112. doi: 10.6052/j.issn.1000-4750.2015.03.0232

    XuYing, Han Qinghua, Lian Jijian. Progressive collapse performance of single-layer latticed shells [J]. Engineering Mechanics, 2016, 33(11): 105 − 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0232

    [22] 范峰, 王多智, 支旭东, 等. K8型单层球面网壳抗冲击荷载性能研究[J]. 工程力学, 2009, 26(6): 75 − 81.

    Fan Feng, Wang Duozhi, Zhi Xudong, et al. Performance for Kiewitt8 single-layer reticulated domes subjected to impact load [J]. Engineering Mechanics, 2009, 26(6): 75 − 81. (in Chinese)

    [23] 王秀丽, 马肖彤. 冲击荷载作用下受损网壳结构全过程动力响应分析[J]. 建筑科学与工程学报, 2013, 30(3): 14 − 19. doi: 10.3969/j.issn.1673-2049.2013.03.003

    Wang Xiuli, Ma Xiaotong. Whole process of dynamic response of damaged reticulated structure shell under impact load [J]. Journal of Architecture and Civil Engineering, 2013, 30(3): 14 − 19. (in Chinese) doi: 10.3969/j.issn.1673-2049.2013.03.003

图(14)  /  表(4)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  138
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2022-02-22
  • 网络出版日期:  2022-03-22
  • 刊出日期:  2022-06-05

目录

    /

    返回文章
    返回