Abstract:
Bridge deflection is an important indicator for the bridges from their design to their operation and maintenance stage. Real-time monitoring is crucial for the performance evaluation of bridges. A shape-sensing array based on the inverse finite element method (iFEM) is proposed. The deflection curve of a bridge can accurately be obtained by the strain data measured at limited points in real-time. Thusly, the basic principle of inverse finite element method and shape inversion sensing array device are described in detail. The technology is applied to the experimental study of deflection monitoring of a concrete self-anchored suspension bridge model. Static loading and dynamic loading were carried out on the bridge model, and the shape and the accuracy of the inverted deflection curve were verified by level gauge and laser displacement sensor. The results show that the shape-sensing array has the advantages of easy installation, good data accuracy and, excellent real-time performance for bridge deflection monitoring. This technology can accurately obtain bridge deflections and invert the curvature of deflection in real-time, which can effectively evaluate the performance and quality of a bridge.