RESEARCH AND APPLICATION OF LARGE HEIGHT DIFFERENCE WHEEL SPOKE STRUCTURE
-
摘要: 针对外环高度变化较大可能引起轮辐结构径向索受压的问题,通过设置刚性撑杆代替部分受压的径向索,解决了采用传统轮辐结构无法成形的难题。推导出轮辐结构的预应力态求解公式,考虑结构自重和索夹重量等的影响,通过反复迭代确定内环各节点的标高,形成索-杆混合结构找形分析方法。对大高差轮辐结构的受力性能进行较为全面的分析,考察了外环高差、径索系杆以及附加环索等参数的影响。计算分析结果表明:大高差轮辐结构在承受长轴方向半跨活荷载和风荷载作用时较为不利,但个别径索或撑杆失效不会引起结构连续倒塌。随着外环高差加大,撑杆数量相应增多,短轴构件及长轴上径索的内力增大,长轴下径索的内力减小。在长度较大的径索中部设置系杆,能够有效地协调上、下径索之间的变形。在长轴附近设置附加环索,可以通过增强相邻径索之间的联系,提高屋面支承结构的竖向刚度。大高差轮辐结构设置刚性撑杆的成形方法已成功应用于厦门新体育中心体育场工程。Abstract: According to the problem that the radial cable of a wheel spoke structure may be compressed due to the large change of the height of its outer ring, the rigid strut is introduced to replace the partially compressed radial cable, which solves the problem that the traditional wheel spoke structure cannot be formed. The prestressed state solution formula of the wheel spoke structure is deduced, considering the influence of the self-weight of the structure and the weight of the cable clamp, etc., the elevation of each node of the inner ring is determined through repeated iterations, and the form-finding method for the hybrid cable-strut structure analysis is formed. The mechanical performance of the wheel spoke structure with large height difference is analyzed comprehensively, and the influence of the parameters such as the height difference of the outer ring, the radial cable tie rod and the additional ring cable are investigated. The analysis results show that: the wheel spoke structure with large-height-difference is relatively unfavorable when it is subjected to the half-span live load and wind loading in the long axis direction, but the failure of individual radial cables or struts will not cause the structure to collapse continuously. As the height difference of the outer ring increases, the number of struts increases accordingly, the internal force of the members on short-axis and the upper radial cable on long-axis increases, and the internal force of the lower radial cable on long-axis decreases. Tie rods are arranged in the middle of the long radial cable, which can effectively coordinate the deformation between the upper and lower radial cables. By setting additional ring cables near the long axis, the vertical stiffness of the roof support structure can be improved by strengthening the connection between the adjacent radial cables. The forming method of setting rigid struts in the wheel spoke structure with large height difference has been successfully applied to the Xiamen New Sports Center Stadium Project.
-
-
表 1 径向索/杆的内力
Table 1 Internal force of radial cable/strut
编号 上径索 下径索/杆 本文/kN 有限元/kN 误差/(%) 本文/kN 有限元
/kN误差/(%) 1 460.6 472.8 2.61 1723.1 1708.5 0.85 2 481.3 477.6 0.77 1702.0 1687.5 0.86 3 551.8 547.7 0.75 1546.6 1533.0 0.88 4 875.6 869.5 0.70 1137.7 1126.8 0.96 5 1375.7 1340.8 2.57 470.4 491.5 4.39 6 1796.1 1831.9 1.97 −152.2 −157.4 −3.36 7 2077.9 2093.6 0.75 −602.2 −630.9 −4.65 8 2214.3 2218.9 0.21 −845.7 −860.0 −1.68 9 2260.0 2258.3 0.08 −948.9 −956.9 −0.84 10 2263.6 2260.6 0.13 −981.8 −986.2 −0.45 11 2265.6 2257.7 0.35 −988.2 −991.6 −0.34 表 2 荷载工况组合
Table 2 Combination of load conditions
工况类别 工况1 工况2 工况3 荷载组合 恒载 恒载+活1 恒载+活2 工况类别 工况4 工况5 工况6 荷载组合 恒载+活3 恒载+0°风 恒载+90°风 表 3 活荷载布置对结构内力和变形的影响
Table 3 Influence of live load arrangement on internal force and deformation of the structure
荷载工况 内力/kN 最大竖向
位移/mm短轴
上径索短轴
下撑杆长轴
下径索长轴
上径索最小
索力1.3恒+1.5活1 2364 −1068 815 1342 81 255.7 1.3恒+1.5活2 2348 −1061 703 1462 110 188.6 1.3恒+1.5活3 2325 −1039 809 1329 75 258.5 表 4 上径索参数与挠度
Table 4 Parameter and deflection of upper radial cables
编号 单索跨度l/m 支座高差c/m 索力T/kN 挠度w/mm 式(8) FEM 误差δ/(%) 1 33.5 16.0 460.6 489.0 461.3 5.83 2 31.9 13.9 481.3 445.2 433.9 2.57 3 28.3 9.7 551.8 347.2 337.7 2.78 4 24.1 5.4 875.6 202.5 200.2 1.12 5 19.9 1.9 1375.7 96.5 99.3 2.89 6 16.2 0.5 1796.1 49.8 51.3 3.02 7 13.1 1.8 2077.9 28.7 29.7 3.37 8 10.7 2.6 2214.3 18.4 18.9 2.71 9 9.0 2.9 2260.0 12.9 13.3 3.05 10 8.0 3.0 2263.6 10.3 10.5 2.33 11 7.6 3.0 2265.6 9.4 9.6 1.92 注:δ=[ABS(式(2)−FEM)/FEM]×100%。 表 5 节点位移随系杆数量的变化
Table 5 Variation of displacement with the number of tie rods
系杆
数量节点位移/mm P0 Pu1 Pd1 Pu2 Pd2 Pu3 Pd3 0 14.5 415.4 35.6 589.4 40.2 471.3 28.4 1 61.3 287.1 161.6 245.0 245.0 322.5 132.8 2 72.6 232.8 193.4 300.9 231.4 237.4 171.8 3 76.9 206.5 206.5 251.4 251.4 189.7 189.7 表 6 径索索力随系杆数量的变化
Table 6 Variation of radial cable force with the number tie rods
系杆数量 索力/kN 上径索 下径索 0 768.0 1450.1 1 637.5 1570.3 2 613.5 1607.3 3 602.7 1622.5 -
[1] 董石麟, 赵阳. 论空间结构的形式和分类[J]. 土木工程学报, 2004, 37(1): 7 − 12. doi: 10.3321/j.issn:1000-131X.2004.01.002 Dong Shilin, Zhao Yang. Discussion on types and classifications of spatial structures [J]. China Civil Engineering Journal, 2004, 37(1): 7 − 12. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.01.002
[2] Mungan I, Abel J F. Fifty years of progress for shell and spatial structures [M]. Maddrid, Spain: IASS Jubilee Book, 2011.
[3] Wang B. Cable-strut systems: part II-cable-strut [J]. Journal of constructional steel research, 1998, 45(3): 291 − 299. doi: 10.1016/S0143-974X(97)00076-X
[4] 郭彦林, 王昆, 田广宇, 等. 车辐式张拉结构体型研究与设计[J]. 建筑结构学报, 2013, 34(5): 1 − 10. Guo Yanlin, Wang Kun, Tian Guangyu, et al. Research and design of structural form of spoke structure [J]. Journal of Building Structures, 2013, 34(5): 1 − 10. (in Chinese)
[5] 王昆. 车辐式张拉结构的体型研究与设计[D]. 北京: 清华大学, 2011. Wang Kun. Research and design of the architectural form of the spoke structure [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[6] 胡宗羽, 王俊, 赵基达. 轮辐式交叉索结构构形研究及其预应力态分析[J]. 土木工程学报, 2017, 50(9): 8 − 15. Hu Zongyu, Wang Jun, Zhao Jida. Study on structural types and prestressing force distribution of wheel-spoke crossed cable structures [J]. China Civil Engineering Journal, 2017, 50(9): 8 − 15. (in Chinese)
[7] Roy B C, Goeppert K, Stockhusen K. State-of-the-Art roof for the Jawaharlal Nehru Stadium [J]. Structural Engineering International, 2013, 23(1): 18 − 22. doi: 10.2749/101686613X13363929987972
[8] 李竞一. 伦敦2012奥运会主体育场[J]. 建筑技艺, 2011(增刊 2): 96 − 99. Li Jingyi. London 2012 Olympic Games Stadium [J]. Architecture Technique, 2011(Suppl 2): 96 − 99. (in Chinese)
[9] Shimanovsky A V. Awaiting the 2012 European Football Championship: some features of the reconstruction of the stadium of the “Olympic” National Sports Centre in Kiev [J]. Steel Construction, 2012, 5(1): 61 − 65. doi: 10.1002/stco.201200008
[10] 王文胜, 薄燕培, 胡庆卫. 佛山世纪莲体育中心索膜结构[C]. 南京: 第十一届空间结构学术会议论文集, 2005: 613 − 618. Wang Wensheng, Bo Yanpei, Hu Qingwei. Foshan century lotus sports center cable membrane structure [C]. Nanjing: Proceedings of the 11th Academic Conference on Spatial Structures, 2005: 613 − 618. (in Chinese)
[11] Christian Gahl. 深圳宝安体育场[J]. 建筑学报, 2011(9): 62 − 68. Christian Gahl. Shenzhen Bao’an Stadiu [J]. Architectural Journal, 2011(9): 62 − 68. (in Chinese)
[12] 张爱林, 文闻, 张艳霞, 等. 空间三撑杆双环索索穹顶考虑自重的预应力计算方法及参数分析[J]. 工程力学, 2020, 37(5): 36 − 45. doi: 10.6052/j.issn.1000-4750.2019.07.0403 Zhang Ailin, Wen Wen, Zhang Yanxia, et al. Calculation method and parameter analysis of prestressing considering self-weight in space three-strut double-loop cable dome [J]. Engineering Mechanics, 2020, 37(5): 36 − 45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0403
[13] 董石麟, 陈伟刚, 涂源, 等. 蜂窝三撑杆型索穹顶结构构形和预应力态分析研究[J]. 工程力学, 2019, 36(9): 128 − 135. doi: 10.6052/j.issn.1000-4750.2018.08.0438 Dong Shilin, Chen Weigang, Tu Yuan, et al. Analysis of structural configuration and pre-stress state of honeycomb three-strut type cable dome [J]. Engineering Mechanics, 2019, 36(9): 128 − 135. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.0438
[14] 向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法——预载回弹法[J]. 工程力学, 2019, 36(2): 45 − 52. doi: 10.6052/j.issn.1000-4750.2017.12.0971 Xiang Xinan, Feng Yuan, Dong Shilin. A new method for determining the initial prestress distribution of cable dome structures-the preload rebound method [J]. Engineering Mechanics, 2019, 36(2): 45 − 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0971
[15] 董石麟, 梁昊庆. 肋环人字型索穹顶受力特性及其预应力态的分析法[J]. 建筑结构学报, 2014, 35(6): 102 − 108. Dong Shilin, Liang Haoqing. Mechanical characteristics and analysis of prestressing force distribution of herringbone ribbed cable dome [J]. Journal of Building Structures, 2014, 35(6): 102 − 108. (in Chinese)
[16] 张爱林, 孙超, 姜子钦. 联方型双撑杆索穹顶考虑自重的预应力计算方法[J]. 工程力学, 2017, 34(3): 211 − 218. doi: 10.6052/j.issn.1000-4750.2016.01.0056 Zhang Ailin, Sun Chao, Jiang Ziqin. Calculation method of prestress distribution for levy cable dome with double struts considering self-weight [J]. Engineering Mechanics, 2017, 34(3): 211 − 218. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.01.0056
[17] Argyris J H, Angelopoulos T, Bichat B. A general method for the shape finding of lightweight tension structures [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1): 135 − 149. doi: 10.1016/0045-7825(74)90046-2
[18] JGJ 7−2010, 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2011. JGJ 7−2010, Technical specification for space frame structures [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
[19] JGJ 257−2012, 索结构技术规程[S]. 北京: 中国建筑工业出版社, 2012. JGJ 257−2012, Technical specification for cable structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[20] CECS392: 2014, 建筑结构抗倒塌设计规范[S]. 北京: 中国计划出版社, 2014. CECS392: 2014, Code for anti-collapse design of building structures [S]. Beijing: China Planning Press, 2014. (in Chinese)