Loading [MathJax]/jax/output/SVG/jax.js

非均质材料与位错交互能的数值等效夹杂算法

李璞, 朱凯, 侯佳卉, 谢东东, 钱厚鹏, 金晓清

李璞, 朱凯, 侯佳卉, 谢东东, 钱厚鹏, 金晓清. 非均质材料与位错交互能的数值等效夹杂算法[J]. 工程力学, 2022, 39(7): 10-18. DOI: 10.6052/j.issn.1000-4750.2021.03.0229
引用本文: 李璞, 朱凯, 侯佳卉, 谢东东, 钱厚鹏, 金晓清. 非均质材料与位错交互能的数值等效夹杂算法[J]. 工程力学, 2022, 39(7): 10-18. DOI: 10.6052/j.issn.1000-4750.2021.03.0229
LI Pu, ZHU Kai, HOU Jia-hui, XIE Dong-dong, QIAN Hou-peng, JIN Xiao-qing. A NUMERICAL EQUIVALENT INCLUSION METHOD FOR DETERMINING THE INTERACTION ENERGY BETWEEN INHOMOGENEITIES AND DISLOCATIONS[J]. Engineering Mechanics, 2022, 39(7): 10-18. DOI: 10.6052/j.issn.1000-4750.2021.03.0229
Citation: LI Pu, ZHU Kai, HOU Jia-hui, XIE Dong-dong, QIAN Hou-peng, JIN Xiao-qing. A NUMERICAL EQUIVALENT INCLUSION METHOD FOR DETERMINING THE INTERACTION ENERGY BETWEEN INHOMOGENEITIES AND DISLOCATIONS[J]. Engineering Mechanics, 2022, 39(7): 10-18. DOI: 10.6052/j.issn.1000-4750.2021.03.0229

非均质材料与位错交互能的数值等效夹杂算法

基金项目: 国家自然科学基金重点项目(11932004);国家自然科学基金项目(51875059);重庆市基础研究与前沿探索项目(cstc2020jcyj-msxmX0850);中央高校基本科研业务费项目(2020CDJ-LHZZ-067)
详细信息
    作者简介:

    李 璞(1989−),男,河北人,博士生,主要从事工程结构中的断裂、疲劳与损伤研究(E-mail: pli3563@163.com)

    朱 凯(1989−),男,湖南人,博士生,主要从事工程结构中的断裂、疲劳与损伤研究(E-mail: kaychu0523@foxmail.com)

    侯佳卉(1996−),女,山西人,硕士生,主要从事工程结构中的断裂、疲劳与损伤研究(E-mail: 2425676196@qq.com)

    谢东东(1995−),男,重庆人,硕士生,主要从事工程结构中的断裂、疲劳与损伤研究(E-mail: 1101112469@qq.com)

    钱厚鹏(1994−),男,河南人,硕士生,主要从事工程结构中的断裂、疲劳与损伤研究(E-mail: zzuliqhp@126.com)

    通讯作者:

    金晓清(1974−),男,浙江人,教授,博士,博导,工程力学系主任,主要从事工程结构中的断裂、疲劳与损伤研究(E-mail: jinxq@cqu.edu.cn)

  • 中图分类号: O343.7;O77+2;O77+5

A NUMERICAL EQUIVALENT INCLUSION METHOD FOR DETERMINING THE INTERACTION ENERGY BETWEEN INHOMOGENEITIES AND DISLOCATIONS

  • 摘要: 工程结构中的夹杂物和位错会极大地影响材料的力学性能和服役寿命。以往的解析解主要关注特定形状(如圆形、椭圆形)夹杂物与位错之间的相互作用。当采用数值方法计算时,由于位错的奇异性,即使是商用有限元软件也会面临处理上的困难。该文基于数值等效夹杂算法并结合快速傅里叶变换,求解了无穷体内夹杂物与刃型位错的交互能,有效地规避了数值奇异性问题。相对误差的范数分析结果表明,在杂质附近所产生的应力扰动对最终结果具有较大影响。该文计算方法能够更加精确地确定应力扰动场,并显示出优越的数值收敛性和稳定性。在求解任意形状杂质与位错相互作用问题中,该文提供了一种便捷且有效的计算方案。
    Abstract: The mechanical properties and service life of materials may be significantly influenced by the interaction between inhomogeneities and dislocations in engineering structures. Previous analytical studies on inhomogeneity-dislocation interactions have been concerned primarily on some special inhomogeneity shapes (e.g. circle and ellipse). On the other hand, the involved singularity issue in dislocation studies is challenging, even intractable for commercial finite element software. Using the numerical equivalent inclusion method (NEIM) in conjunction with the Fast Fourier Transforms technique, this work presents an effective computational scheme for evaluating the interaction energy between an edge dislocation and inhomogeneities. The proposed computational method may successfully circumvent the numerical singularity. The results of norm analyses on relative errors demonstrate that the stress disturbance field caused by the impurity has a great influence on the final solutions, especially when the dislocation is located in the neighborhood of the inhomogeneity. The proposed method in this work shows excellent numerical convergence and stability, and appears to be convenient and efficient for handling arbitrarily shaped inhomogeneities interacting with an edge dislocation.
  • 图  1   任意形状杂质与刃型位错的相互作用示意图

    Figure  1.   Schematic of an arbitrarily shaped inhomogeneity interacting with an edge dislocation

    图  2   杂质-位错问题中的Eshelby等效夹杂法

    Figure  2.   Schematic of Eshelby's equivalent inclusion method for the interaction between an edge dislocation and an inhomogeneity

    图  3   杂质-位错问题中的交互能和位错受力的计算流程图

    Figure  3.   Flow-chart of the present computational scheme for solving the interaction energy and force on dislocation due to an edge dislocation interacting with an inhomogeneity

    图  4   圆形杂质与刃型位错的相互作用示意图

    Figure  4.   Schematic of a circular inhomogeneity interacting with an edge dislocation

    图  5   无量纲交互能的变化图,其中位错位置ξ/ax1轴上从1.1移动到1.6

    Figure  5.   Variation of the normalized interaction energy with dislocation position varying along x1-axis from 1.1 to 1.6

    图  6   无量纲位错受力的变化图,其中位错位置ξ/ax1轴上从1.1移动到1.6

    Figure  6.   Variation of the normalized force with dislocation position varying along x1-axis from 1.1 to 1.6

    图  7   刃型位错与Al2O3交互能的变化图,其中位错位置ξ/ax1轴上从2.1移动到2.6

    Figure  7.   Variation of the interaction energy between edge dislocation and Al2O3 where dislocation position varies along x1-axis from 2.1 to 2.6

    图  8   位错受力的变化图,其中位错位置ξ/ax1轴上从2.1移动到2.6

    Figure  8.   Variation of the force on edge dislocation with dislocation position ξ/a varying along x1-axis from 2.1 to 2.6

    图  9   椭圆形SiC杂质与刃型位错的交互能

    Figure  9.   Schematic of an elliptical SiC inhomogeneity interacting with an edge dislocation

    图  10   复杂形状杂质与刃型位错的交互能

    Figure  10.   Schematic of the interaction energy between an inhomogeneity with complex boundary and an edge dislocation

    图  11   复杂形状杂质与刃型位错作用下的位错受力

    Figure  11.   Schematic of the force due to an inhomogeneity with complex boundary and an edge dislocation

    表  1   夹杂物和相应基体的计算参数

    Table  1   Computational parameters of an inhomogeneity and the corresponding matrix

    参数基体SiCTi-6Al-V
    剪切模量μ/GPa80.8176.7041.00
    泊松比 ν0.30.160.34
    下载: 导出CSV

    表  2   本文数值计算方案和零次迭代解之间的相对误差结果对比

    Table  2   Comparisons on relative error of results between the present numerical scheme and 0th solution

    数值方法材料相互作用能/(%)位错受力/(%)
    δ(ΔW)δ2(ΔW)δ(F1)δ2(F1)
    本文解 SiC 0.7604 0.9643 8.7324 6.8297
    Ti-6Al-V 1.0585 1.1993 9.3380 5.9627
    Al2O3 1.0452 1.3100 6.4230 3.3556
    零次迭代解 SiC 39.4298 38.7584 27.5083 32.3126
    Ti-6Al-V 20.1655 19.4616 29.7823 26.1940
    Al2O3 20.5311 18.5288 28.4090 24.4514
    下载: 导出CSV
  • [1] 江勇, 许明, 危书涛. 充氢工艺对复合材料储氢气瓶残余应力的影响[J]. 工程力学, 2021, 38(1): 249 − 256. doi: 10.6052/j.issn.1000-4750.2020.03.0146

    Jiang Yong, Xu Ming, Wei Shutao. The influence of fast filling on the residual stress of composite overwrapped pressure vessel for hydrogen [J]. Engineering Mechanics, 2021, 38(1): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0146

    [2] 肖志鹏, 仇翯辰, 周磊. 复合材料支撑机翼撑杆位置与结构综合优化设计[J]. 工程力学, 2019, 36(9): 213 − 220. doi: 10.6052/j.issn.1000-4750.2018.09.0476

    Xiao Zhipeng, Qiu Hechen, Zhou Lei. Integrated optimization design of strut location and structure for composite strut-braced wing [J]. Engineering Mechanics, 2019, 36(9): 213 − 220. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0476

    [3] 中国机械工程学会. 中国机械工程技术路线图[R]. 第二版. 北京: 中国科学技术出版社, 2016.

    Chinese Mechanical Engineering Society. Chinese mechanical engineering technology roadmap [R]. 2nd ed. Beijing: Chinese Science Press, 2016. (in Chinese)

    [4] 孙振铎, 李伟, 张震宇, 等. 基于超高周疲劳多元化失效模式的概率S-N曲线模型构建方法[J]. 工程力学, 2016, 33(4): 218 − 224. doi: 10.6052/j.issn.1000-4750.2014.08.0705

    Sun Zhenduo, Li Wei, Zhang Zhenyu, et al. A method to building probabilistic S-N curves for multiple failure modes in very high cycle fatigue [J]. Engineering Mechanics, 2016, 33(4): 218 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.08.0705

    [5]

    Gao N, Yao Z, Lu G, et al. Mechanisms for <100> interstitial dislocation loops to diffuse in BCC iron [J]. Nature Communications, 2021, 12(225): 1 − 8. doi: 10.1038/s41467-020-20574-6

    [6] 岳中文, 韩瑞杰, 郝文峰, 等. 基体裂纹-异型夹杂相互作用焦散线实验研究[J]. 工程力学, 2015, 32(10): 198 − 202. doi: 10.6052/j.issn.1000-4750.2014.03.0143

    Yue Zhongwen, Han Ruijie, Hao Wenfeng, et al. Experimental study on caustics of interaction between matrix crack and deformity inclusion [J]. Engineering Mechanics, 2015, 32(10): 198 − 202. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0143

    [7] 施光明, 徐艳杰, 钟红, 等. 基于多边形比例边界有限元的复合材料裂纹扩展模拟[J]. 工程力学, 2014, 31(7): 1 − 7. doi: 10.6052/j.issn.1000-4750.2013.01.0027

    Shi Guangming, Xu Yanjie, Zhong Hong, et al. Modelling of crack propagation for composite materials based on polygon scaled boundary finite elements [J]. Engineering Mechanics, 2014, 31(7): 1 − 7. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0027

    [8] 周圣春, 李克非. 含裂纹夹杂多孔材料的渗透性理论与数值分析[J]. 工程力学, 2013, 30(4): 150 − 156. doi: 10.6052/j.issn.1000-4750.2011.11.0753

    Zhou Shengchun, Li Kefei. Theoretical and numerical analyses of permeability of porous medium with cracking inclusions [J]. Engineering Mechanics, 2013, 30(4): 150 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.11.0753

    [9]

    Dundurs J, Mura T. Interaction between an edge dislocation and a circular inclusion [J]. Journal of the Mechanics and Physics of Solids, 1964, 12(3): 177 − 189. doi: 10.1016/0022-5096(64)90017-1

    [10]

    Stagni L, Lizzio R. Edge dislocation trapping by a cylindrical inclusion near a traction-free surface [J]. Journal of Applied Physics, 1981, 52: 1104 − 1107. doi: 10.1063/1.328813

    [11]

    Stagni L, Lizzio R. Shape effects in the interaction between an edge dislocation and an elliptical inhomogeneity [J]. Applied Physics A, 1983, 30(4): 217 − 221. doi: 10.1007/BF00614769

    [12]

    Santare M H, Keer L M. Interaction between an edge dislocation and a rigid elliptical inclusion [J]. Journal of Applied Mechanics, 1986, 53(2): 382 − 385. doi: 10.1115/1.3171768

    [13]

    Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity [M]. Leyden: Noordhoff, 1953.

    [14]

    Chen F, Chao C, Chen C. Interaction of an edge dislocation with a coated elliptic inclusion [J]. International Journal of Solids and Structures, 2011, 48(10): 1451 − 1465. doi: 10.1016/j.ijsolstr.2011.01.027

    [15]

    Dai D. An edge dislocation inside a semi-infinite plane containing a circular hole [J]. International Journal of Solids and Structures, 2018, 136/137: 295 − 305. doi: 10.1016/j.ijsolstr.2017.12.022

    [16]

    Hills D A, Kelly P A, Dai D N, et al. Solution of crack problems: the distributed dislocation technique [M]. Dordrecht: Kluwer Academic Publishers, 1998.

    [17]

    Arai M. Application of distributed dislocation method to curved crack moving near a press-fitted inclusion in a two-dimensional infinite plate [J]. Engineering Fracture Mechanics, 2019, 218: 106609. doi: 10.1016/j.engfracmech.2019.106609

    [18]

    Cimbaro L, Sutton A. P, Balint D S, et al. Embrittlement of an elasto-plastic medium by an inclusion [J]. International Journal of Fracture, 2019, 216(1): 87 − 100. doi: 10.1007/s10704-019-00344-2

    [19]

    Fan M, Zhang Y, Xiao Z. The interface effect of a nano-inhomogeneity on the fracture behavior of a crack and the nearby edge dislocation [J]. International Journal of Damage Mechanics, 2017, 26(3): 480 − 497. doi: 10.1177/1056789516665453

    [20]

    Erdogan F, Gupta G D, Ratwani M. Interaction between a circular inclusion and an arbitrarily oriented crack [J]. Journal of Applied Mechanics, 1974, 41(4): 1007 − 1013. doi: 10.1115/1.3423424

    [21]

    Xiao Z M, Chen B J. Stress intensity factor for a Griffith crack interacting with a coated inclusion [J]. International Journal of Fracture, 2001, 108(3): 193 − 205. doi: 10.1023/A:1011066521439

    [22]

    Wang X, Wang C, Schiavone P. An edge dislocation near a nanosized circular inhomogeneity with interface slip and diffusion [J]. European Journal of Mechanics - A/Solids, 2017, 61: 122 − 133. doi: 10.1016/j.euromechsol.2016.09.008

    [23]

    Cui Y, Xie D, Yu P, et al. Formation of iron hydride in α-Fe under dislocation strain field and its effect on dislocation interaction [J]. Computational Materials Science, 2018, 141: 254 − 259. doi: 10.1016/j.commatsci.2017.09.032

    [24]

    Krasnikov V S, Mayer A E. Dislocation dynamics in aluminum containing θ’ phase: Atomistic simulation and continuum modeling [J]. International Journal of Plasticity, 2019, 119: 21 − 42. doi: 10.1016/j.ijplas.2019.02.010

    [25]

    Dundurs J, Sendeckyj G P. Edge dislocation inside a circular inclusion [J]. Journal of the Mechanics and Physics of Solids, 1965, 13(3): 141 − 147. doi: 10.1016/0022-5096(65)90017-7

    [26]

    Lubarda V A. An analysis of edge dislocation pileups against a circular inhomogeneity or a bimetallic interface [J]. International Journal of Solids and Structures, 2017, 129: 146 − 155. doi: 10.1016/j.ijsolstr.2017.09.004

    [27]

    Song Q, Li Z, Zhu Y, et al. On the interaction of solute atoms with circular inhomogeneity and edge dislocation [J]. International Journal of Plasticity, 2018, 111: 266 − 287. doi: 10.1016/j.ijplas.2018.07.019

    [28] 黄拳章, 强洪夫, 郑小平, 等. 混合夹杂问题的边界元法[J]. 工程力学, 2014, 31(11): 17 − 24. doi: 10.6052/j.issn.1000-4750.2013.05.0479

    Huang Quanzhang, Qiang Hongfu, Zheng Xiaoping, et al. Boundary element method for problems with multiple types of inclusions [J]. Engineering Mechanics, 2014, 31(11): 17 − 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0479

    [29] 井亚彬, 黄佩珍. 弹性模量比对界面迁移下夹杂演化的影响[J]. 工程力学, 2020, 37(7): 8 − 16. doi: 10.6052/j.issn.1000-4750.2019.08.0444

    Jing Yabin, Huang Peizhen. The effect of elastic modulus ratio on inclusion evolution by interface migration [J]. Engineering Mechanics, 2020, 37(7): 8 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0444

    [30] 王峰, 林皋, 周宜红, 等. 非均质材料的扩展无单元Galerkin法模拟[J]. 工程力学, 2018, 35(8): 14 − 20. doi: 10.6052/j.issn.1000-4750.2017.04.0291

    Wang Feng, Lin Gao, Zhou Yihong, et al. Numerical simulation of inhomogeneous material using extended element-free Galerkin method [J]. Engineering Mechanics, 2018, 35(8): 14 − 20. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0291

    [31]

    Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1957, 241(1226): 376 − 396.

    [32]

    Mura T. Micromechanics of defects in solids [M]. Dordrecht: Kluwer Academic Publishers, 1987.

    [33]

    Jin X, Wang Z, Zhou Q, et al. On the Solution of an elliptical inhomogeneity in plane elasticity by the equivalent inclusion method [J]. Journal of Elasticity, 2014, 114(1): 1 − 18. doi: 10.1007/s10659-012-9423-0

    [34]

    Zhou Q, Jin X, Wang Z, et al. Numerical implementation of the equivalent inclusion method for 2D arbitrarily shaped inhomogeneities [J]. Journal of Elasticity, 2015, 118(1): 39 − 61. doi: 10.1007/s10659-014-9477-2

    [35]

    Hutchinson J W. Crack tip shielding by micro-cracking in brittle solids [J]. Acta Metallurgica, 1987, 35(7): 1605 − 1619. doi: 10.1016/0001-6160(87)90108-8

    [36]

    Li Z, Li Y, Sun J, et al. An approximate continuum theory for interaction between dislocation and inhomogeneity of any shape and properties [J]. Journal of Applied Physics, 2011, 109(11): 113529. doi: 10.1063/1.3592342

    [37]

    Li Z, Shi J. The interaction of a screw dislocation with inclusion analyzed by Eshelby equivalent inclusion method [J]. Scripta Materialia, 2002, 47(6): 371 − 375. doi: 10.1016/S1359-6462(02)00113-6

    [38]

    Li P, Lyu D, Soewardiman H, et al. Analytical and numerical evaluation of the interaction energy between screw dislocation and inhomogeneous inclusion [J]. Mechanics of Materials, 2021, 156: 103788. doi: 10.1016/j.mechmat.2021.103788

    [39]

    Dundurs J. On the interaction of a screw dislocation with inhomogeneities [C]// Recent Advances in Engineering Science, Eringen AC (ed.). New York, Gordon & Breach, 1967, 2: 223 − 233.

    [40]

    Li P, Zhang X, Lyu D, et al. A computational scheme for the interaction between an edge dislocation and an arbitrarily shaped inhomogeneity via the numerical equivalent inclusion method [J]. Physical Mesomechanics, 2019, 22: 164 − 171. doi: 10.1134/S1029959919020061

    [41]

    Jin X, Keer L M, Wang Q, Note on the FFT based computational code and its application [C]// 2008 Proceedings of the STLE/ASME International Joint Tribology Conference. New York, ASME, 2008: 609 − 611.

    [42]

    Sun L, Wang Q, Zhang M, et al. Discrete convolution and FFT method with summation of influence coefficients (DCS-FFT) for three-dimensional contact of inhomogeneous materials [J]. Computer Mechanics, 2020, 65: 1509 − 1529. doi: 10.1007/s00466-020-01832-2

    [43]

    Wang Q, Sun L, Zhang X, et al. , FFT-based methods for computational contact mechanics [J]. Frontiers in Mechanical Engineering, 2020, 6: 1 − 22. doi: 10.3389/fmech.2020.00061

    [44] 侯佳卉, 李璞, 黎江林, 等. 任意形状热夹杂位移场的三角形单元离散算法[J]. 力学学报, 2021, 53(1): 205 − 212.

    Hou Jiahui, Li Pu, Li Jianglin, et al. A triangular element discretization for computing displacement of an arbitrarily shaped thermal inclusion [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 205 − 212. (in Chinese)

    [45]

    Barnett D M, Tetelman A S. The stresses produced by a screw dislocation pileup at a circular inclusion of finite rigidity [J]. Canadian Journal of Physics, 1967, 45: 841 − 863. doi: 10.1139/p67-064

    [46]

    Alquier D, Bongiorno C, Roccaforte F, et al. Interaction between dislocations and He-implantation-induced voids in GaN epitaxial layers [J]. Applied Physics Letters, 2005, 86: 211911. doi: 10.1063/1.1940121

图(11)  /  表(2)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  149
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-28
  • 修回日期:  2021-07-16
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回