开孔形式影响装配式耗能支撑滞回性能研究

黄晨凯, 赵宝成

黄晨凯, 赵宝成. 开孔形式影响装配式耗能支撑滞回性能研究[J]. 工程力学, 2021, 38(12): 81-96. DOI: 10.6052/j.issn.1000-4750.2020.11.0800
引用本文: 黄晨凯, 赵宝成. 开孔形式影响装配式耗能支撑滞回性能研究[J]. 工程力学, 2021, 38(12): 81-96. DOI: 10.6052/j.issn.1000-4750.2020.11.0800
HUANG Chen-kai, ZHAO Bao-cheng. INFLUENCES OF THE SHAPE OF HOLES ON THE HYSTERETIC PERFORMANCE OF ASSEMBLED ENERGY DISSIPATION BRACES[J]. Engineering Mechanics, 2021, 38(12): 81-96. DOI: 10.6052/j.issn.1000-4750.2020.11.0800
Citation: HUANG Chen-kai, ZHAO Bao-cheng. INFLUENCES OF THE SHAPE OF HOLES ON THE HYSTERETIC PERFORMANCE OF ASSEMBLED ENERGY DISSIPATION BRACES[J]. Engineering Mechanics, 2021, 38(12): 81-96. DOI: 10.6052/j.issn.1000-4750.2020.11.0800

开孔形式影响装配式耗能支撑滞回性能研究

基金项目: 国家自然科学基金项目(51878432);江苏省研究生科研创新计划项目(KYCX19_2024)
详细信息
    作者简介:

    黄晨凯(1995−),男,江苏无锡人,硕士生,主要从事钢结构抗震性能研究(E-mail: 897412336@qq.com)

    通讯作者:

    赵宝成(1970−),男,内蒙古赤峰人,教授,工学博士,主要从事钢结构、组合结构抗震性能研究(E-mail:690056365@qq.com)

  • 中图分类号: TU391

INFLUENCES OF THE SHAPE OF HOLES ON THE HYSTERETIC PERFORMANCE OF ASSEMBLED ENERGY DISSIPATION BRACES

  • 摘要: 装配式H型钢腹板开孔耗能支撑是由腹板开孔H型钢和传力槽钢通过螺栓连接组成的新型耗能支撑,可有效避免支撑构件失稳。为了研究腹板开孔形状对这种支撑的耗能性能的影响,进行了装配式耗能支撑试件低周往复加载试验,并采用有限元软件进行了模拟计算。试验结果表明:装配式H型钢腹板开孔耗能支撑滞回曲线饱满,耗能能力强,变形能力好。在轴向荷载作用下,试件主要依靠开孔腹板孔间板件进入塑性变形耗能阶段,腹板开长圆孔的试件与腹板开椭圆孔的试件孔间板件端部为薄弱部位,腹板开菱形孔的试件孔间板件中间部位为薄弱部位,加载过程中这些部位首先进入塑性变形阶段并最先发生断裂。加载过程中螺栓与槽钢始终处于弹性变形状态。有限元分析表明:改变腹板宽度对于腹板开长圆孔的耗能支撑的承载能力与初始刚度影响最大,对于腹板开椭圆孔的耗能支撑影响最小;改变孔间板件宽度对于腹板开菱形孔的耗能支撑影响较小。改变腹板厚度对于三种腹板开孔形式耗能支撑的承载力与初始刚度影响相近。当试件主体过早失稳,可通过增大高宽比、减小腹板厚度或选用翼缘更大的槽钢来避免。耗能板件螺栓连接部位安全可靠,未见变形或破坏,布置螺栓时孔距不应超过4.5d0
    Abstract: A novel type of brace composited of H-shaped steel with holes on the webs, force transmission channels and assembling bolts was proposed for structural energy-consumption and buckling restraint. The effects of the web holes on the energy dissipating ability of the brace were studied by cyclic axial loading tests and the finite element method. The test results indicate that this type of brace has a remarkable hysteretic behavior. The energy dissipation and failure mode of brace specimens were governed by the plasticity development of the plates between the web holes, in which the plastic zones were concentrated at the ends of the plates between slotted or elliptical holes and in the middle of the plates between diamond holes. All bolts and channels remained elastic throughout the tests. The finite element analysis reveals that the width of the web greatly affects the initial stiffness and strength of the braces with slotted holes, while it only slightly affects the behavior of the braces with elliptical holes. The hole distances had a minor effect on the behavior of the braces with diamond holes. The effects of the web thickness on the initial stiffness and strength of the braces with slotted, elliptical, and diamond holes were similar. Design suggestions were proposed according to the analysis results that the premature buckling can be avoided by increasing the height-to-width ratio, by reducing the web thickness of H-shaped braces, or by enlarging the flanges of the channel, and that the bolt spacing shall be less than 4.5 times the diameter of the bolt holes.
  • 图  1   装配式H型钢腹板开孔耗能支撑

    Figure  1.   Assembled H-beam web opening energy dissipation brace

    图  2   试验试件几何尺寸

    Figure  2.   Test specimen geometric dimensions

    图  3   试验装置

    Figure  3.   Test setup of specimen

    图  4   位移计布置

    Figure  4.   Displacement meter layout

    图  5   应变片布置

    Figure  5.   Strain gauge layout

    图  6   BDW-1试验现象

    Figure  6.   BDW-1 test phenomena

    图  7   BDW-2试验现象

    Figure  7.   BDW-2 test phenomena

    图  8   BDW-3试验现象

    Figure  8.   BDW-3 test phenomena

    图  9   滞回曲线

    Figure  9.   Hysteresis curves

    图  10   骨架曲线对比

    Figure  10.   Comparison of skeleton curves

    图  11   刚度退化曲线

    Figure  11.   Stiffness degradation curves

    图  12   荷载强度退化曲线

    Figure  12.   Load strength degradation curves

    图  13   累积滞回耗能图

    Figure  13.   Cumulative hysteretic energy dissipation

    图  14   等效粘滞阻尼系数

    Figure  14.   Equivalent viscous damping ratios

    图  15   应变曲线

    Figure  15.   Strain curves

    图  16   网格划分示例

    Figure  16.   Examples of finite element mesh

    图  17   有限元曲线与试验曲线对比

    Figure  17.   Comparison of finite element analysis and test curves

    图  18   支撑几何模型

    Figure  18.   Geometric model of braces

    图  19   A组参数对比曲线

    Figure  19.   Comparison of curves with parameters in Group A

    图  20   B组参数对比曲线

    Figure  20.   Comparison of curves with parameters in Group B

    图  21   C组参数对比曲线

    Figure  21.   Comparison of curves with parameters in Group C

    图  22   Mises应力图

    Figure  22.   Mises stress diagram

    表  1   钢材的材料性能

    Table  1   Material properties of steels

    钢材屈服强度fy/MPa抗拉强度fu/MPa弹性模量E/(N·mm−2伸长率δ/(%)
    槽钢290.18490.062.01×10523.0
    支撑腹板284.51433.051.90×10526.3
    支撑翼缘282.38448.431.99×10532.7
    下载: 导出CSV

    表  2   装配式H型钢腹板开孔耗能支撑模型几何参数

    Table  2   Geometric parameters of energy dissipation brace models of H-shaped steel with web holes

    编号腹板长度
    L/mm
    腹板宽度
    b/mm
    腹板厚度
    t/mm
    翼缘厚度
    tf/mm
    开孔宽度
    ho/mm
    孔间板件
    最小宽度hc/mm
    开孔下端
    圆弧到翼缘
    的距离l1/mm
    开孔长度
    l2/mm
    开孔上端
    圆弧到螺栓
    中心的距离l3/mm
    螺栓
    个数a
    孔间板件
    行数n
    SH-1 685 300 12 12 20 20 28 87 35 15 15
    SH-2 685 400 12 12 20 20 28 137 35 15 15
    SH-3 685 300 12 12 25 15 28 87 35 15 15
    SH-4 685 300 8 12 20 20 28 87 35 15 15
    SH-5 685 300 12 12 20 20 28 87 35 8 15
    SH-6 685 300 12 12 15 25 28 87 35 8 15
    EH-1 685 300 12 12 30 20 18 107 25 12 12
    EH-2 685 400 12 12 30 20 18 157 25 12 12
    EH-3 685 300 12 12 35 15 18 107 25 12 12
    EH-4 685 300 8 12 30 20 18 107 25 12 12
    DH-1 685 300 12 12 30 20 18 107 25 12 12
    DH-2 685 400 12 12 30 20 18 107 25 12 12
    DH-3 685 300 12 12 35 15 18 157 25 12 12
    DH-4 685 300 8 12 30 20 18 107 25 12 12
    下载: 导出CSV
  • [1] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9): 1 − 14. doi: 10.6052/j.issn.1000-4750.2016.04.ST01

    Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress in the type and design theory and application of anti-buckling braces [J]. Engineering Mechanics, 2016, 33(9): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.ST01

    [2]

    Wang Chunlin, Chen Quan, Zeng Bin, et al. A novel brace with partial buckling restraint: An experimental and numerical investigation [J]. Engineering Structures, 2017, 150: 190 − 202. doi: 10.1016/j.engstruct.2017.06.031

    [3]

    Mohsenzadeh Vahid, Wiebe Lydell. Seismic design of braced frame columns with and without replaceable brace modules [J]. Journal of Constructional Steel Research, 2021,178: p.106460.

    [4] 崔瑶, 许肖卓, 林迟. 考虑支撑断裂及节点板作用的中心支撑框架抗震性能研究[J]. 工程力学, 2020, 37(10): 85 − 92. doi: 10.6052/j.issn.1000-4750.2019.11.0648

    Cui Yao, Xu Xiaozhuo, Lin Chi. Research on seismic performance of central braces frame considering braces fracture and gusset plate effect [J]. Engineering Mechanics, 2020, 37(10): 85 − 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0648

    [5] 高向宇, 李杨龙, 李建勤, 等. 钢支撑动力屈曲致扭机理及BRB减扭机理的研究[J]. 工程力学, 2020, 37(11): 83 − 96, 107. doi: 10.6052/j.issn.1000-4750.2019.12.0748

    Gao Xiangyu, Li Yanglong, Li Jianqin, et al. Study on the torsion mechanism of dynamic buckling of steel braces and the mechanism of BRB torsion reduction [J]. Engineering Mechanics, 2020, 37(11): 83 − 96, 107. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0748

    [6] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177 − 187. doi: 10.6052/j.issn.1000-4750.2018.03.0107

    Xu Longhe, Wu Hu. Study on the lateral seismic performance of cable-stayed bridges with self-resetting energy dissipation braces [J]. Engineering Mechanics, 2019, 36(4): 177 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0107

    [7] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156 − 164. doi: 10.6052/j.issn.1000-4750.2018.06.0316

    Liu Jialin, Xu Longhe. Study on the mechanical performance of steel plate shear wall with self-resetting energy dissipation braces [J]. Engineering Mechanics, 2019, 36(7): 156 − 164. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0316

    [8]

    Liu Jialin, Xu Longhe, Li Zhongxian. Development and experimental validation of a steel plate shear wall with self-centering energy dissipation braces [J]. Thin-Walled Structures, 2020, 148: 106598. doi: 10.1016/j.tws.2019.106598

    [9]

    Fan Xiaowei, Xu Longhe, Xie XingSi. Hysteresis analysis of pre-pressed spring self-centering energy dissipation braces using different models [J]. Advances in Structural Engineering, 2019, 22(12): 2662 − 2671. doi: 10.1177/1369433219849844

    [10]

    Fatemeh Aliakbari, Sadegh Garivani, Ali Akbar Aghakouchak. An energy based method for seismic design of frame structures equipped with metallic yielding dampers considering uniform inter-story drift concept [J]. Engineering Structures, 2020, 205: 110114. doi: 10.1016/j.engstruct.2019.110114

    [11] 陈云, 蒋欢军, 刘涛. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 − 62. doi: 10.6052/j.issn.1000-4750.2018.01.0036

    Chen Yun, Jiang Huanjun, Liu Tao. Seismic performance of graded yield metal dampers [J]. Engineering Mechanics, 2019, 36(3): 53 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0036

    [12] 陈云, 陈超, 蒋欢军, 等. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119 − 128. doi: 10.6052/j.issn.1000-4750.2017.11.0805

    Chen Yun, Chen Chao, Jiang Huanjun, et al. Experiment and analysis of mechanical properties of O-shaped steel plate-high-damping viscoelastic composite energy dissipater [J]. Engineering Mechanics, 2019, 36(1): 119 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0805

    [13] 吴从晓, 李定斌, 张骞, 等. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105 − 117. doi: 10.6052/j.issn.1000-4750.2019.06.0300

    Wu Congxiao, Li Dingbin, Zhang Qian, et al. PCF-MDC system technical scheme and seismic performance test research [J]. Engineering Mechanics, 2020, 37(4): 105 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0300

    [14]

    Garivani Sadegh, Askariani Seyed Saeed, Aghakouchak Ali Akbar. Seismic design of structures with yielding dampers based on drift demands [J]. Structures, 2020, 28: 1885 − 1899. doi: 10.1016/j.istruc.2020.10.019

    [15]

    Ahmadie Amiri Hossein, Pournamazian Najafabadi Esmaeil, Esmailpur Estekanchi Homayoon, et al. Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method [J]. Engineering Structures, 2020, 224: 110955. doi: 10.1016/j.engstruct.2020.110955

    [16] 国巍, 马晨智, 曾晨. 新型阻尼减振器的试验研究[J]. 建筑结构, 2018, 48(增刊 2): 413 − 417.

    Guo Wei, Ma Chenzhi, Zeng Chen. Experimental study on new damping shock absorber [J]. Architectural Structure, 2018, 48(Suppl 2): 413 − 417. (in Chinese)

    [17] 鲁亮, 刘霞, 代桂霞. 轴向拉压型金属阻尼器抗震性能测试及其应用研究[J]. 振动与冲击, 2017, 36(16): 141 − 147.

    Lu Liang, Liu Xia, Dai Guixia. Seismic performance test and Application research of axial tension and compression type metal damper [J]. Vibration and impact, 2017, 36(16): 141 − 147. (in Chinese)

    [18] 徐艳红, 李爱群, 黄镇. 抛物线外形软钢阻尼器试验研究[J]. 建筑结构学报, 2011, 32(12): 202 − 209.

    Xu Yanhong, Li Aiqun, Huang Zhen. Experimental study on soft steel damper with parabolic shape [J]. Journal of Architectural Structure, 2011, 32(12): 202 − 209. (in Chinese)

    [19]

    Amadeo Benavent-Climent. A brace-type seismic damper based on yielding the walls of hollow structural sections [J]. Engineering Structures, 2010, 32(4): 1113 − 1122. doi: 10.1016/j.engstruct.2009.12.037

    [20] 孙瑛志, 李国强, 孙飞飞. 一种套管式金属阻尼器的试验研究[J]. 工程抗震与加固改造, 2018, 40(3): 87 − 92.

    Sun Yingzhi, Li Guoqiang, Sun Feifei. Experimental study on a metal damper with casing [J]. Engineering Seismic and Reinforcement Renovation, 2018, 40(3): 87 − 92. (in Chinese)

    [21] 孙筱玮, 赵宝成, 沈晓明. 新型腹板开孔屈服耗能支撑滞回性能分析[J]. 工程抗震与加固改造, 2019, 41(3): 15 − 25.

    Sun Xiaowei, Zhao Baocheng, Shen Xiaoming. Analysis on the hysteretic performance of the new web opening and energy dissipation [J]. Engineering Earthquake Resistance and Reinforcement, 2019, 41(3): 15 − 25. (in Chinese)

    [22] GB/T 2975−2018, 钢及钢产 品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 2019.

    GB/T 2975−2018, Steel and steel products—Location and preparation of samples and test pieces for mechanical testing [S]. Beijing: China Standard Press, 2019. (in Chinese)

    [23] GB/T 228.1−2010, 金属材料拉伸试验第一部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011.

    GB/T 228.1−2010, Metallic materials — Tensile testing — Part 1: Method of test at room temperature [S]. Beijing: China Standard Press, 2011. (in Chinese)

    [24]

    SAC/BD-97/02, Protocol for Fabrication, Inspection, Testing and Documentation of Beam-Column Connection Test and Other Experimental Specimens [S]. SAC Joint Venture, Sacramento, Calif,1997.

图(22)  /  表(2)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  253
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回