INFLUENCES OF THE SHAPE OF HOLES ON THE HYSTERETIC PERFORMANCE OF ASSEMBLED ENERGY DISSIPATION BRACES
-
摘要: 装配式H型钢腹板开孔耗能支撑是由腹板开孔H型钢和传力槽钢通过螺栓连接组成的新型耗能支撑,可有效避免支撑构件失稳。为了研究腹板开孔形状对这种支撑的耗能性能的影响,进行了装配式耗能支撑试件低周往复加载试验,并采用有限元软件进行了模拟计算。试验结果表明:装配式H型钢腹板开孔耗能支撑滞回曲线饱满,耗能能力强,变形能力好。在轴向荷载作用下,试件主要依靠开孔腹板孔间板件进入塑性变形耗能阶段,腹板开长圆孔的试件与腹板开椭圆孔的试件孔间板件端部为薄弱部位,腹板开菱形孔的试件孔间板件中间部位为薄弱部位,加载过程中这些部位首先进入塑性变形阶段并最先发生断裂。加载过程中螺栓与槽钢始终处于弹性变形状态。有限元分析表明:改变腹板宽度对于腹板开长圆孔的耗能支撑的承载能力与初始刚度影响最大,对于腹板开椭圆孔的耗能支撑影响最小;改变孔间板件宽度对于腹板开菱形孔的耗能支撑影响较小。改变腹板厚度对于三种腹板开孔形式耗能支撑的承载力与初始刚度影响相近。当试件主体过早失稳,可通过增大高宽比、减小腹板厚度或选用翼缘更大的槽钢来避免。耗能板件螺栓连接部位安全可靠,未见变形或破坏,布置螺栓时孔距不应超过4.5d0。Abstract: A novel type of brace composited of H-shaped steel with holes on the webs, force transmission channels and assembling bolts was proposed for structural energy-consumption and buckling restraint. The effects of the web holes on the energy dissipating ability of the brace were studied by cyclic axial loading tests and the finite element method. The test results indicate that this type of brace has a remarkable hysteretic behavior. The energy dissipation and failure mode of brace specimens were governed by the plasticity development of the plates between the web holes, in which the plastic zones were concentrated at the ends of the plates between slotted or elliptical holes and in the middle of the plates between diamond holes. All bolts and channels remained elastic throughout the tests. The finite element analysis reveals that the width of the web greatly affects the initial stiffness and strength of the braces with slotted holes, while it only slightly affects the behavior of the braces with elliptical holes. The hole distances had a minor effect on the behavior of the braces with diamond holes. The effects of the web thickness on the initial stiffness and strength of the braces with slotted, elliptical, and diamond holes were similar. Design suggestions were proposed according to the analysis results that the premature buckling can be avoided by increasing the height-to-width ratio, by reducing the web thickness of H-shaped braces, or by enlarging the flanges of the channel, and that the bolt spacing shall be less than 4.5 times the diameter of the bolt holes.
-
-
表 1 钢材的材料性能
Table 1 Material properties of steels
钢材 屈服强度fy/MPa 抗拉强度fu/MPa 弹性模量E/(N·mm−2) 伸长率δ/(%) 槽钢 290.18 490.06 2.01×105 23.0 支撑腹板 284.51 433.05 1.90×105 26.3 支撑翼缘 282.38 448.43 1.99×105 32.7 表 2 装配式H型钢腹板开孔耗能支撑模型几何参数
Table 2 Geometric parameters of energy dissipation brace models of H-shaped steel with web holes
编号 腹板长度
L/mm腹板宽度
b/mm腹板厚度
t/mm翼缘厚度
tf/mm开孔宽度
ho/mm孔间板件
最小宽度hc/mm开孔下端
圆弧到翼缘
的距离l1/mm开孔长度
l2/mm开孔上端
圆弧到螺栓
中心的距离l3/mm螺栓
个数a孔间板件
行数nSH-1 685 300 12 12 20 20 28 87 35 15 15 SH-2 685 400 12 12 20 20 28 137 35 15 15 SH-3 685 300 12 12 25 15 28 87 35 15 15 SH-4 685 300 8 12 20 20 28 87 35 15 15 SH-5 685 300 12 12 20 20 28 87 35 8 15 SH-6 685 300 12 12 15 25 28 87 35 8 15 EH-1 685 300 12 12 30 20 18 107 25 12 12 EH-2 685 400 12 12 30 20 18 157 25 12 12 EH-3 685 300 12 12 35 15 18 107 25 12 12 EH-4 685 300 8 12 30 20 18 107 25 12 12 DH-1 685 300 12 12 30 20 18 107 25 12 12 DH-2 685 400 12 12 30 20 18 107 25 12 12 DH-3 685 300 12 12 35 15 18 157 25 12 12 DH-4 685 300 8 12 30 20 18 107 25 12 12 -
[1] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9): 1 − 14. doi: 10.6052/j.issn.1000-4750.2016.04.ST01 Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress in the type and design theory and application of anti-buckling braces [J]. Engineering Mechanics, 2016, 33(9): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.ST01
[2] Wang Chunlin, Chen Quan, Zeng Bin, et al. A novel brace with partial buckling restraint: An experimental and numerical investigation [J]. Engineering Structures, 2017, 150: 190 − 202. doi: 10.1016/j.engstruct.2017.06.031
[3] Mohsenzadeh Vahid, Wiebe Lydell. Seismic design of braced frame columns with and without replaceable brace modules [J]. Journal of Constructional Steel Research, 2021,178: p.106460.
[4] 崔瑶, 许肖卓, 林迟. 考虑支撑断裂及节点板作用的中心支撑框架抗震性能研究[J]. 工程力学, 2020, 37(10): 85 − 92. doi: 10.6052/j.issn.1000-4750.2019.11.0648 Cui Yao, Xu Xiaozhuo, Lin Chi. Research on seismic performance of central braces frame considering braces fracture and gusset plate effect [J]. Engineering Mechanics, 2020, 37(10): 85 − 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0648
[5] 高向宇, 李杨龙, 李建勤, 等. 钢支撑动力屈曲致扭机理及BRB减扭机理的研究[J]. 工程力学, 2020, 37(11): 83 − 96, 107. doi: 10.6052/j.issn.1000-4750.2019.12.0748 Gao Xiangyu, Li Yanglong, Li Jianqin, et al. Study on the torsion mechanism of dynamic buckling of steel braces and the mechanism of BRB torsion reduction [J]. Engineering Mechanics, 2020, 37(11): 83 − 96, 107. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0748
[6] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177 − 187. doi: 10.6052/j.issn.1000-4750.2018.03.0107 Xu Longhe, Wu Hu. Study on the lateral seismic performance of cable-stayed bridges with self-resetting energy dissipation braces [J]. Engineering Mechanics, 2019, 36(4): 177 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0107
[7] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156 − 164. doi: 10.6052/j.issn.1000-4750.2018.06.0316 Liu Jialin, Xu Longhe. Study on the mechanical performance of steel plate shear wall with self-resetting energy dissipation braces [J]. Engineering Mechanics, 2019, 36(7): 156 − 164. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0316
[8] Liu Jialin, Xu Longhe, Li Zhongxian. Development and experimental validation of a steel plate shear wall with self-centering energy dissipation braces [J]. Thin-Walled Structures, 2020, 148: 106598. doi: 10.1016/j.tws.2019.106598
[9] Fan Xiaowei, Xu Longhe, Xie XingSi. Hysteresis analysis of pre-pressed spring self-centering energy dissipation braces using different models [J]. Advances in Structural Engineering, 2019, 22(12): 2662 − 2671. doi: 10.1177/1369433219849844
[10] Fatemeh Aliakbari, Sadegh Garivani, Ali Akbar Aghakouchak. An energy based method for seismic design of frame structures equipped with metallic yielding dampers considering uniform inter-story drift concept [J]. Engineering Structures, 2020, 205: 110114. doi: 10.1016/j.engstruct.2019.110114
[11] 陈云, 蒋欢军, 刘涛. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 − 62. doi: 10.6052/j.issn.1000-4750.2018.01.0036 Chen Yun, Jiang Huanjun, Liu Tao. Seismic performance of graded yield metal dampers [J]. Engineering Mechanics, 2019, 36(3): 53 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0036
[12] 陈云, 陈超, 蒋欢军, 等. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119 − 128. doi: 10.6052/j.issn.1000-4750.2017.11.0805 Chen Yun, Chen Chao, Jiang Huanjun, et al. Experiment and analysis of mechanical properties of O-shaped steel plate-high-damping viscoelastic composite energy dissipater [J]. Engineering Mechanics, 2019, 36(1): 119 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0805
[13] 吴从晓, 李定斌, 张骞, 等. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105 − 117. doi: 10.6052/j.issn.1000-4750.2019.06.0300 Wu Congxiao, Li Dingbin, Zhang Qian, et al. PCF-MDC system technical scheme and seismic performance test research [J]. Engineering Mechanics, 2020, 37(4): 105 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0300
[14] Garivani Sadegh, Askariani Seyed Saeed, Aghakouchak Ali Akbar. Seismic design of structures with yielding dampers based on drift demands [J]. Structures, 2020, 28: 1885 − 1899. doi: 10.1016/j.istruc.2020.10.019
[15] Ahmadie Amiri Hossein, Pournamazian Najafabadi Esmaeil, Esmailpur Estekanchi Homayoon, et al. Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method [J]. Engineering Structures, 2020, 224: 110955. doi: 10.1016/j.engstruct.2020.110955
[16] 国巍, 马晨智, 曾晨. 新型阻尼减振器的试验研究[J]. 建筑结构, 2018, 48(增刊 2): 413 − 417. Guo Wei, Ma Chenzhi, Zeng Chen. Experimental study on new damping shock absorber [J]. Architectural Structure, 2018, 48(Suppl 2): 413 − 417. (in Chinese)
[17] 鲁亮, 刘霞, 代桂霞. 轴向拉压型金属阻尼器抗震性能测试及其应用研究[J]. 振动与冲击, 2017, 36(16): 141 − 147. Lu Liang, Liu Xia, Dai Guixia. Seismic performance test and Application research of axial tension and compression type metal damper [J]. Vibration and impact, 2017, 36(16): 141 − 147. (in Chinese)
[18] 徐艳红, 李爱群, 黄镇. 抛物线外形软钢阻尼器试验研究[J]. 建筑结构学报, 2011, 32(12): 202 − 209. Xu Yanhong, Li Aiqun, Huang Zhen. Experimental study on soft steel damper with parabolic shape [J]. Journal of Architectural Structure, 2011, 32(12): 202 − 209. (in Chinese)
[19] Amadeo Benavent-Climent. A brace-type seismic damper based on yielding the walls of hollow structural sections [J]. Engineering Structures, 2010, 32(4): 1113 − 1122. doi: 10.1016/j.engstruct.2009.12.037
[20] 孙瑛志, 李国强, 孙飞飞. 一种套管式金属阻尼器的试验研究[J]. 工程抗震与加固改造, 2018, 40(3): 87 − 92. Sun Yingzhi, Li Guoqiang, Sun Feifei. Experimental study on a metal damper with casing [J]. Engineering Seismic and Reinforcement Renovation, 2018, 40(3): 87 − 92. (in Chinese)
[21] 孙筱玮, 赵宝成, 沈晓明. 新型腹板开孔屈服耗能支撑滞回性能分析[J]. 工程抗震与加固改造, 2019, 41(3): 15 − 25. Sun Xiaowei, Zhao Baocheng, Shen Xiaoming. Analysis on the hysteretic performance of the new web opening and energy dissipation [J]. Engineering Earthquake Resistance and Reinforcement, 2019, 41(3): 15 − 25. (in Chinese)
[22] GB/T 2975−2018, 钢及钢产 品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 2019. GB/T 2975−2018, Steel and steel products—Location and preparation of samples and test pieces for mechanical testing [S]. Beijing: China Standard Press, 2019. (in Chinese)
[23] GB/T 228.1−2010, 金属材料拉伸试验第一部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011. GB/T 228.1−2010, Metallic materials — Tensile testing — Part 1: Method of test at room temperature [S]. Beijing: China Standard Press, 2011. (in Chinese)
[24] SAC/BD-97/02, Protocol for Fabrication, Inspection, Testing and Documentation of Beam-Column Connection Test and Other Experimental Specimens [S]. SAC Joint Venture, Sacramento, Calif,1997.