Abstract:
The bolted joint plate structure is one of the most widely used detachable fixed joints in aircraft structures. We study the dynamic modeling of bolted-joint plates and establish the dynamic equivalent model of bolted-joint plates based on the thin-layer element theory. The weighted sum of the natural frequency error and the modal confidence criterion residual are used as the objective functions. We propose to use the water cycle algorithm to globally modify the material parameters of the thin-layer elements. By an example of a clamped-clamped five-bolt lap plate, we verify the feasibility and robustness of the proposed dynamic modeling method. The results show that the established dynamic prediction model of the bolted joint plate structure can accurately characterize its dynamic characteristics and reduces the effect of the measurement noise compared to the current dynamic modeling methods.