RESEARCH ON CAVITATION CHARACTERISTICS OF INNER SPEED MEASUREMENT TURBINE DEVICE FOR UNDERWATER HIGH-SPEED MOVING BODY
-
摘要: 水中运动体高速下会发生空化而改变流场结构,研究测速涡轮装置空化特性对提升运动体自主环境感知能力具有重要意义。该文基于内置测速涡轮的防空化结构设计,针对水流速度为10 m/s下的不同空化数、有无偏角情况,利用空化水洞实验和数值仿真模拟对测速涡轮装置的空化情况、涡轮转动情况和涡轮装置的空化特性进行了研究。结果表明:与无涡轮装置样机相比,空化区域发生了明显变化,云状空化团脱落明显加快,云状脱落范围更小。同时,该涡轮装置具有隔离外部空化的能力,在外界空化数高于临界空化数(σCr=0.4)的情况下,能够保证涡轮装置位于线性测量范围。Abstract: The cavitation of a high-speed moving body in water would change the surrounding flow field structure, which affect the speed measurement turbine. It is of great significance to study cavitation characteristics of the speed measurement turbine to improve autonomous environment perception ability of a moving body. Based on the cavitation structure design of the inner speed measurement turbine, cavitation morphology and dynamic characteristics of the turbine speed measurement device were studied by using cavitation water tunnel experiments and numerical simulation methods for different cavitation numbers and flow angles at a water flow velocity of 10 m/s. According to the results of simulation and experiment, the characteristics of each stage of cavitation development are analyzed and compared. The results show that: compared with the prototype without turbine, the cavitation area has changed significantly, the shedding of cloud-like cavitation mass shedding is significantly accelerated, and the cloud-like shedding range is smaller. At the same time, the turbine could isolate external cavitation. When the external cavitation number is higher than the critical cavitation number (σCr=0.4), the turbine can be used properly within the linear measurement range.
-
-
表 1 涡轮叶片参数及取值
Table 1 Turbine parameters and values(blade)
参数 Rh/mm Hb/mm Lh/mm γt/(°) N Ld/mm tb/mm 取值 6.6 4 13 5.43 8 139.4 0.6 注:Rh为最小轮毂半径;Hb为叶片最大高度;Lh为轮毂长度;γt为轮毂表面倾角;N为叶片数;Ld为叶片导程;tb为叶片厚度。 表 2 涡轮轮毂与内流道参数及取值
Table 2 Turbine parameters and values (hub and flow channel)
参数 Lf/mm LH/mm No So/mm γ/(°) Lb/mm La/mm αo/(°) 取值 4.5 15 6 3 20.14 11.5 0 30 注:Lf为涡轮后部轮毂宽度;LH为涡轮前部轮毂宽度;No为出水孔个数;So为出水孔直径;γ为涡轮轮毂锥度;Lb为叶片长度;La为叶片尾部高度;αo为出水孔斜度。 表 3 无涡轮装置样机头部空化(10 m/s)
Table 3 Head cavitation of prototype without turbine (10 m/s)
空化数 σ=0.8 σ=0.6 σ=0.4 σ=0.2 α=0° α=5° 表 4 涡轮装置空化(10 m/s,α=0°)
Table 4 Cavitation of the turbine device (10 m/s,α=0°)
空化数 σ=1.0 σ=0.8 σ=0.6 σ=0.4 σ=0.2 实验 仿真 表 5 涡轮装置空化(10 m/s,α=5°)
Table 5 Cavitation of the turbine device (10 m/s,α=5°)
σ=1.0 σ=0.8 σ=0.6 σ=0.4 σ=0.2 实验 仿真 表 6 空化脱落的平均周期(σ=0.4)
Table 6 Turine parameters and values the turbine (σ=0.4)
工况 无涡轮装置
α=0°无涡轮装置
α=5°有涡轮装置
α=0°有涡轮装置
α=5°周期/s 0.127 0.284 0.062 0.117 -
[1] 沈德璋, 张合, 李豪杰. 一种小型水下高速运动体的自主测速方法[J]. 仪器仪表学报, 2012, 33(12): 2697 − 2702. Shen Dezhang, Zhang He, Li Haojie. Autonomous velocity measurement method for small underwater high velocity moving body [J]. Chinese Journal of Scientific Instrument, 2012, 33(12): 2697 − 2702. (in Chinese)
[2] 陈勇, 张合, 马少杰, 沈德璋. 水中测速涡轮高速旋转下的空化特性研究[J]. 工程力学, 2014, 31(11): 204 − 210. Chen Yong, Zhang He, Ma Shaojie, Shen Dezhang. Research on cavitation characteristics of underwater velocity measurement turbine with high rotating speed [J]. Engineering Mechanics, 2014, 31(11): 204 − 210. (in Chinese)
[3] Kumar P, Saini R P. Study of cavitation in hydro turbines—A review [J]. Renewable & Sustainable Energy Reviews, 2010, 14(1): 374 − 383.
[4] Sreedhar B K, Albert S K, Pandit A B. Cavitation damage: Theory and measurements—A review [J]. Wear, 2017, 372: 177 − 196.
[5] 王畅畅, 黄彪, 王国玉, 等. 附着型空穴断裂及脱落机制的实验研究[J]. 工程力学, 2017, 34(10): 249 − 256. Wang Changchang, Huang Biao, Wang Guoyu, et al. Experimental investigation on the breakdown and shedding mechanisms of unsteady attached cavitating flows [J]. Engineering Mechanics, 2017, 34(10): 249 − 256. (in Chinese)
[6] Custodio D, Henoch C, Johari H. Cavitation on hydrofoils with leading edge protuberances [J]. Ocean Engineering, 2018, 162: 196 − 208. doi: 10.1016/j.oceaneng.2018.05.033
[7] Hao J, Zhang M, Xu H. The influence of surface roughness on cloud cavitation flow around hydrofoils [J]. Acta Mechanica Sinica, 2018(1): 1 − 12.
[8] Zhao W G, Zhang L X, Shao X M, et al. Numerical study on the control mechanism of cloud cavitation by obstacles [J]. Journal of Hydrodynamics, Ser. B, 2010, 22(5): 792 − 797.
[9] Chen Y, Chen X, Li J, et al. Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil [J]. Ocean Engineering, 2017, 129: 1 − 19. doi: 10.1016/j.oceaneng.2016.11.012
[10] 陈伟善, 郭则庆, 刘如石, 黄振贵. 空化器形状对超空泡射弹尾拍运动影响的数值研究[J]. 工程力学, 2020, 37(4): 248 − 256. Chen Weishan, Guo Zeqing, Liu Rushi, Huang Zhengui. Numerical simulation on the influence of cavitator shapes on the tail-slap of supercavitating projectiles [J]. Engineering Mechanics, 2020, 37(4): 248 − 256. (in Chinese)
[11] Iga Y, Yoshida Y. Mechanism of propagation direction of rotating cavitations in a cascade [J]. Journal of Propulsion and Power, 2015, 27(3): 675 − 683.
[12] Guo X M, Zhu Z C, Cui B L, et al. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump [J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3173 − 3181.
[13] Zhao X, Huang B, Chen T, et al. Numerical simulations and surrogate-based optimization of cavitation performance for an aviation fuel pump [J]. Journal of Mechanical Science and Technology, 2017, 31(2): 705 − 716.
[14] Lee M G, Lim C S, Han S H. Shape design of the bottom plug used in a 3-way reversing valve to minimize the cavitation effect [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(3): 401 − 406.
[15] Schnerr G H, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics [C]. Fourth International Conference on Multiphase Flow, New Orleans, USA, 2001.
[16] Wang Z, Bovik A C, Sheikh H R , Simoncelli E P . Image quality assessment: From error visibility to structural similarity [J]. IEEE Transaction on Image Processing, 2004, 13(4): 600 − 612. doi: 10.1109/TIP.2003.819861